skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Sanzhong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Glacial-marine sediments from the Antarctic continental margin provide a record of depositional environment, oceanographic variability and ice dynamics that is tapped with scientific ocean drilling. This study focuses on Ocean Drilling Program Core 693A-2R, a 9.7 m sediment core retrieved from near the continental margin of the Archean Grunehogna Craton in Dronning Maud Land (DML), East Antarctica. The results contribute to a better understanding of ice-shelf behavior in DML during the mid-Pleistocene transition (MPT), a well-known transition from 40-kyr to 100-kyr cycle periods. The age model, constructed based on Sr isotope stratigraphy and geomagnetic reversals, indicates that the core spans 1.20 to 0.65 Ma. The dynamic behavior of DML ice shelves with periodic iceberg calving is revealed by the glacial–interglacial variation in sedimentation patterns, with interglacials characterized by higher concentrations of ice-rafted debris (IRD) associated with enhanced paleo- productivity than glacial intervals. The responses of DML ice shelves to warm climates are represented by a prolonged interglacial period at 1.0–1.1 Ma (MIS 31–27) and significant interglacial expressions during MIS 19 and 17. The 40Ar/39Ar ages of individual ice-rafted hornblende grains are compared with the on-land geology of DML and neighboring regions to determine the provenances of IRD. Specifically, 40Ar/39Ar results record pri- marily late Neoproterozoic to Cambrian ages (600–400 Ma) with a predominant peak of 520–480 Ma. This Pan- African/Ross orogeny signature is very common in East Antarctica but is not found in the most proximal margin of the Grunehogna Craton, and is instead associated with the region of DML several hundred kilometers east of the deposition site. This indicates that significant discharges of icebergs occurred in the remote DML, which were then transported by the westward-flowing Antarctic Coastal Current to deposit IRD at the studied site during the MPT. This study establishes a confirmed MPT sedimentary sequence off DML, against which future MPT proxy records from the Weddell Sea embayment and other sectors in Antarctica can be compared and correlated, and provides a basis for more detailed analyses of the response of DML ice sheet to Pleistocene climate variations. 
    more » « less
  3. null (Ed.)
  4. Abstract The extensive fast seismic anomalies in the mantle transition zone beneath East Asia are often interpreted as stagnant Pacific slabs, and a reason for the widespread tectonics since the Mesozoic. Previous hypotheses for their formation mostly emphasize vertical resistances to slab penetration or trench retreat. In this study, we investigate the origin of these stagnant slabs using global‐scale thermal‐chemical models with data‐assimilation. We find that subduction of the Izanagi‐Pacific mid‐ocean ridge marked the transition of mantle flow beneath western Pacific from being surface‐driven Couette‐type flow to pressure‐driven Poiseuille‐type flow, a result previously unrealized. This Cenozoic westward mantle wind driven by the pressure gradient independently explains seismic anisotropy in the region. We conclude that the mantle wind is the dominant mechanism for the formation of stagnant slabs by advecting them westward while the pressure gradient holds them in the transition zone. 
    more » « less