skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Shangsong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2026
  2. Pyroelectric materials that can generate electric charges when subjected to temperature changes are of interest for renewable energy. However, current flexible pyroelectric energy harvesters suffer from low output. Here, we present a nanocomposite of liquid crystalline elastomer (LCE) and pyroelectric lead zirconate titanate (PZT) nanoparticles and demonstrate a flexible heat harvesting device with high output. The overall pyroelectricity is enhanced by the secondary pyroelectricity generated from the thermal stress imposed on the LCE. Calculations and simulations corroborate with experiments, suggesting that the monodomain LCE/PZT with fixed boundaries offers the most enhancement. At a maximum heating rate of 0.20 kelvin per second, the fixed monodomain film (42.7 weight % PZT) shows an output current of 2.81 nanoamperes and a voltage of 6.23 volts, corresponding to a pyroelectric coefficientpof −4.01 nanocoulombs per square centimeter per kelvin, 49% higher than that of the widely used polyvinylidene fluoride. Our energy harvester can charge capacitors and power electronic devices such as light-emitting diodes. 
    more » « less
    Free, publicly-accessible full text available February 14, 2026
  3. Abstract Materials that exhibit varied optical responses to different modes of mechanical stimuli are attractive for complex sensing and adaptive functionalities. However, most mechanochromic materials are fabricated from films or fibers with limited actuation modes. Here, hollow tubes of a symmetric sheath are created using cholesteric liquid crystal elastomers (CLCEs) at the sub‐millimeter scale. The oligomeric precursor is sheared in an elastomeric microchannel to form uniform thickness, overcoming gravity effect and Plateau‐Rayleigh instability. In addition, the coloration is achieved to be faster and have higher reflectivity compared to that of solid fibers. The tube can undergo axial, circumferential, and radial strains upon extension and inflation. The combination of molecular anisotropy and geometry of the tube enables highly sensitive mechanochromic responses in both azimuthal and axial directions: inflation causes red‐to‐violet shift (≈220 nm) at a circumferential strain of 0.57. The inflation of a bent tube generates another mechanochromic mode with a higher sensitivity to strain. Finally, display of 26 alphabets is achieved using 5 tubes, of which the positions can be reconfigured, and curvature‐dependent 3D photonic skins are demonstrated from tubes wrapped around 3D objects. The multi‐mode mechanochromic tubes will find applications for soft robotics, adaptive displays, wearable sensors, and spectrometers. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  4. Abstract Direct ink writing (DIW) of core‐shell structures allows for patterning hollow or composite structures for shape morphing and color displays. Cholesteric liquid crystal elastomers (CLCEs) with liquid crystal mesogens assembled in a helix superstructure are attractive for generating tunable iridescent structural colors. Here, by fine‐tuning the rheology of the core and shell materials, respectively, this study creates droplets or a continuous filament in the core from the precursors of polydimethylsiloxane (PDMS) or poly(vinyl alcohol), whereas CLCE forms the outer shell. By introducing a dye in the droplets, the skin structures of cephalopods, consisting of chromatophores and iridocytes, are mimicked for enhanced color saturation, lightness, and camouflage. After removal of the core material, a CLCE hollow fiber is obtained, which can switch colors upon mechanical stretching and pneumatic actuation, much like papilla along with iridocytes. Further, liquid crystal mesogens assembled in the bulk of the fiber are in polydomain. Thus, the skin appears opalescent at room temperature, much like how leucophores enhance reflectins. Upon heating above the nematic to isotropic transition temperature, the skin becomes transparent. Lastly, a cephalopod model is constructed, where different parts of the model can change colors independently based on different mechanisms. 
    more » « less