skip to main content

Search for: All records

Creators/Authors contains: "Li, Tao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 14, 2024
  2. Abstract

    Large numbers of leaves fall on the earth each autumn. The current treatments of dead leaves mainly involve completely destroying the biocomponents, which causes considerable energy consumption and environmental issues. It remains a challenge to convert waste leaves into useful materials without breaking down their biocomponents. Here, we turn red maple dead leaves into an active three-component multifunctional material by exploiting the role of whewellite biomineral for binding lignin and cellulose. Owing to its intense optical absorption spanning the full solar spectrum and the heterogeneous architecture for effective charge separation, films of this material show high performance in solar water evaporation, photocatalytic hydrogen production, and photocatalytic degradation of antibiotics. Furthermore, it also acts as a bioplastic with high mechanical strength, high-temperature tolerance, and biodegradable features. These findings pave the way for the efficient utilization of waste biomass and innovations of advanced materials.

  3. Free, publicly-accessible full text available August 1, 2023
  4. Abstract

    Selectively exciting target molecules to high vibrational states is inefficient in the liquid phase, which restricts the use of IR pumping to catalyze ground-state chemical reactions. Here, we demonstrate that this inefficiency can sometimes be solved by confining the liquid to an optical cavity under vibrational strong coupling conditions. For a liquid solution of13CO2solute in a12CO2solvent, cavity molecular dynamics simulations show that exciting a polariton (hybrid light-matter state) of the solvent with an intense laser pulse, under suitable resonant conditions, may lead to a very strong (>3 quanta) and ultrafast (<1 ps) excitation of the solute, even though the solvent ends up being barely excited. By contrast, outside a cavity the same input pulse fluence can excite the solute by only half a vibrational quantum and the selectivity of excitation is low. Our finding is robust under different cavity volumes, which may lead to observable cavity enhancement on IR photochemical reactions in Fabry–Pérot cavities.

  5. Free, publicly-accessible full text available July 1, 2023
  6. Free, publicly-accessible full text available June 14, 2023
  7. Continuous location authentication (CLA) seeks to continuously and automatically verify the physical presence of legitimate users in a protected indoor area. CLA can play an important role in contexts where access to electrical or physical resources must be limited to physically present legitimate users. In this paper, we present WearRF-CLA, a novel CLA scheme built upon increasingly popular wrist wearables and UHF RFID systems. WearRF-CLA explores the observation that human daily routines in a protected indoor area comprise a sequence of human-states (e.g., walking and sitting) that follow predictable state transitions. Each legitimate WearRF-CLA user registers his/her RFID tag and also wrist wearable during system enrollment. After the user enters a protected area, WearRF-CLA continuously collects and processes the gyroscope data of the wrist wearable and the phase data of the RFID tag signals to verify three factors to determine the user's physical presence/absence without explicit user involvement: (1) the tag ID as in a traditional RFID authentication system, (2) the validity of the human-state chain, and (3) the continuous coexistence of the paired wrist wearable and RFID tag with the user. The user passes CLA if and only if all three factors can be validated. Extensive user experiments onmore »commodity smartwatches and UHF RFID devices confirm the very high security and low authentication latency of WearRF-CLA.« less
    Free, publicly-accessible full text available May 30, 2023
  8. Free, publicly-accessible full text available May 5, 2023
  9. Under vibrational strong coupling (VSC), the formation of molecular polaritons may significantly modify the photo-induced or thermal properties of molecules. In an effort to understand these intriguing modifications, both experimental and theoretical studies have focused on the ultrafast dynamics of vibrational polaritons. Here, following our recent work [Li et al., J. Chem. Phys. 154, 094124 (2021)], we systematically study the mechanism of polariton relaxation for liquid CO 2 under a weak external pumping. Classical cavity molecular dynamics (CavMD) simulations confirm that polariton relaxation results from the combined effects of (i) cavity loss through the photonic component and (ii) dephasing of the bright-mode component to vibrational dark modes as mediated by intermolecular interactions. The latter polaritonic dephasing rate is proportional to the product of the weight of the bright mode in the polariton wave function and the spectral overlap between the polariton and dark modes. Both these factors are sensitive to parameters such as the Rabi splitting and cavity mode detuning. Compared to a Fermi’s golden rule calculation based on a tight-binding harmonic model, CavMD yields a similar parameter dependence for the upper polariton relaxation lifetime but sometimes a modest disagreement for the lower polariton. We suggest that this disagreement resultsmore »from polariton-enhanced molecular nonlinear absorption due to molecular anharmonicity, which is not included in our analytical model. We also summarize recent progress on probing nonreactive VSC dynamics with CavMD.« less
    Free, publicly-accessible full text available April 7, 2023
  10. Tag cloning and spoofing pose great challenges to RFID applications. This paper presents the design and evaluation of RCID, a novel system to fingerprint RFID tags based on the unique reflection coefficient of each tag circuit. Based on a novel OFDM-based fingerprint collector, our system can quickly acquire and verify each tag’s RCID fingerprint which are independent of the RFID reader and measurement environment. Our system applies to COTS RFID tags and readers after a firmware update at the reader. Extensive prototyped experiments on 600 tags confirm that RCID is highly secure with the authentication accuracy up to 97.15% and the median authentication error rate equal to 1.49%. RCID is also highly usable because it only takes about 8 s to enroll a tag and 2 ms to verify an RCID fingerprint with a fully connected multi-class neural network. Finally, empirical studies demonstrate that the entropy of an RCID fingerprint is about 202 bits over a bandwidth of 20 MHz in contrast to the best prior result of 17 bits, thus offering strong theoretical resilience to RFID cloning and spoofing.
    Free, publicly-accessible full text available May 2, 2023