We combine Gaia early data release 3 astrometry with accurate photometry and utilize a probabilistic mixture model to measure the systemic proper motion of 52 dwarf spheroidal (dSph) satellite galaxies of the Milky Way (MW). For the 46 dSphs with literature line-of-sight velocities we compute orbits in both a MW and a combined MW + Large Magellanic Cloud (LMC) potential and identify Car II, Car III, Hor I, Hyi I, Phx II, and Ret II as likely LMC satellites. 40% of our dSph sample has a >25% change in pericenter and/or apocenter with the MW + LMC potential. For these orbits, we use a Monte Carlo sample for the observational uncertainties for each dSph and the uncertainties in the MW and LMC potentials. We predict that Ant II, Boo III, Cra II, Gru II, and Tuc III should be tidally disrupting by comparing each dSph's average density relative to the MW density at its pericenter. dSphs with large ellipticity (CVn I, Her, Tuc V, UMa I, UMa II, UMi, Wil 1) show a preference for their orbital direction to align with their major axis even for dSphs with large pericenters. We compare the dSph radial orbital phase to subhalosmore »
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract We present a chemodynamical study of the Grus I ultra-faint dwarf galaxy (UFD) from medium-resolution (
R ∼ 11,000) Magellan/IMACS spectra of its individual member stars. We identify eight confirmed members of Grus I, based on their low metallicities and coherent radial velocities, and four candidate members for which only velocities are derived. In contrast to previous work, we find that Grus I has a very low mean metallicity of 〈[Fe/H]〉 = −2.62 ± 0.11 dex, making it one of the most metal-poor UFDs. Grus I has a systemic radial velocity of −143.5 ± 1.2 km s−1and a velocity dispersion of km s−1, which results in a dynamical mass ofM ⊙and a mass-to-light ratio ofM/L V =M ⊙/L ⊙. Under the assumption of dynamical equilibrium, our analysis confirms that Grus I is a dark-matter-dominated UFD (M/L > 80M ⊙/L ⊙). However, we do not resolve a metallicity dispersion (σ [Fe/H]< 0.44 dex). Our results indicate that Grus I is a fairly typical UFD with parameters that agree with mass–metallicity and metallicity-luminosity trends for faint galaxies. This agreement suggests that Grus I has not lost an especially significant amount of mass from tidal encounters with the Milky Way, in linemore » -
Abstract We report the kinematic, orbital, and chemical properties of 12 stellar streams with no evident progenitors using line-of-sight velocities and metallicities from the Southern Stellar Stream Spectroscopic Survey ( S 5 ), proper motions from Gaia EDR3, and distances derived from distance tracers or the literature. This data set provides the largest homogeneously analyzed set of streams with full 6D kinematics and metallicities. All streams have heliocentric distances between ∼10 and 50 kpc. The velocity and metallicity dispersions show that half of the stream progenitors were disrupted dwarf galaxies (DGs), while the other half originated from disrupted globular clusters (GCs), hereafter referred to as DG and GC streams. Based on the mean metallicities of the streams and the mass–metallicity relation, the luminosities of the progenitors of the DG streams range between those of Carina and Ursa Major I (−9.5 ≲ M V ≲ −5.5). Four of the six GC streams have mean metallicities of [Fe/H] < −2, more metal poor than typical Milky Way (MW) GCs at similar distances. Interestingly, the 300S and Jet GC streams are the only streams on retrograde orbits in our dozen-stream sample. Finally, we compare the orbital properties of the streams with known DGsmore »
-
ABSTRACT The hyper-velocity star S5-HVS1, ejected 5 Myr ago from the Galactic Centre at 1800 km s−1, was most likely produced by tidal break-up of a tight binary by the supermassive black hole SgrA*. Taking a Monte Carlo approach, we show that the former companion of S5-HVS1 was likely a main-sequence star between 1.2 and 6 M⊙ and was captured into a highly eccentric orbit with pericentre distance in the range of 1–10 au and semimajor axis about 103 au. We then explore the fate of the captured star. We find that the heat deposited by tidally excited stellar oscillation modes leads to runaway disruption if the pericentre distance is smaller than about $3\rm \, au$. Over the past 5 Myr, its angular momentum has been significantly modified by orbital relaxation, which may stochastically drive the pericentre inwards below $3\rm \, au$ and cause tidal disruption. We find an overall survival probability in the range 5 per cent to 50 per cent, depending on the local relaxation time in the close environment of the captured star, and the initial pericentre at capture. The pericentre distance of the surviving star has migrated to 10–100 au, making it potentially the most extreme member of the S-star cluster. From the ejection rate ofmore »
-
Abstract Stellar streams are excellent probes of the underlying gravitational potential in which they evolve. In this work, we fit dynamical models to five streams in the Southern Galactic hemisphere, combining observations from the Southern Stellar Stream Spectroscopic Survey ( S 5 ), Gaia EDR3, and the Dark Energy Survey, to measure the mass of the Large Magellanic Cloud (LMC). With an ensemble of streams, we find a mass of the LMC ranging from ∼14–19 × 10 10 M ⊙ , probed over a range of closest approach times and distances. With the most constraining stream (Orphan–Chenab), we measure an LMC mass of 18.8 − 4.0 + 3.5 × 10 10 M ⊙ , probed at a closest approach time of 310 Myr and a closest approach distance of 25.4 kpc. This mass is compatible with previous measurements, showing that a consistent picture is emerging of the LMC’s influence on structures in the Milky Way. Using this sample of streams, we find that the LMC’s effect depends on the relative orientation of the stream and LMC at their point of closest approach. To better understand this, we present a simple model based on the impulse approximation and we show thatmore »