skip to main content


Search for: All records

Creators/Authors contains: "Li, W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    During geomagnetic storms relativistic outer radiation belt electron flux exhibits large variations on rapid time scales of minutes to days. Many competing acceleration and loss processes contribute to the dynamic variability of the radiation belts; however, distinguishing the relative contribution of each mechanism remains a major challenge as they often occur simultaneously and over a wide range of spatiotemporal scales. In this study, we develop a new comprehensive model for storm‐time radiation belt dynamics by incorporating electron wave‐particle interactions with parallel propagating whistler mode waves into our global test‐particle model of the outer belt. Electron trajectories are evolved through the electromagnetic fields generated from the Multiscale Atmosphere‐Geospace Environment (MAGE) global geospace model. Pitch angle scattering and energization of the test particles are derived from analytical expressions for quasi‐linear diffusion coefficients that depend directly on the magnetic field and density from the magnetosphere simulation. Using a study of the 17 March 2013 geomagnetic storm, we demonstrate that resonance with lower band chorus waves can produce rapid relativistic flux enhancements during the main phase of the storm. While electron loss from the outer radiation belt is dominated by loss through the magnetopause, wave‐particle interactions drive significant atmospheric precipitation. We also show that the storm‐time magnetic field and cold plasma density evolution produces strong, local variations of the magnitude and energy of the wave‐particle interactions and is critical to fully capturing the dynamic variability of the radiation belts caused by wave‐particle interactions.

     
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  2. Interchange instability is known to drive fast radial transport of particles in Jupiter's inner magnetosphere. Magnetic flux tubes associated with the interchange instability often coincide with changes in particle distributions and plasma waves, but further investigations are required to understand their detailed characteristics. We analyze representative interchange events observed by Juno, which exhibit intriguing features of particle distributions and plasma waves, including Z‐mode and whistler‐mode waves. These events occurred at an equatorial radial distance of ∼9 Jovian radii on the nightside, with Z‐mode waves observed at mid‐latitude and whistler‐mode waves near the equator. We calculate the linear growth rate of whistler‐mode and Z‐mode waves based on the observed plasma parameters and electron distributions and find that both waves can be locally generated within the interchanged flux tube. Our findings are important for understanding particle transport and generation of plasma waves in the magnetospheres of Jupiter and other planetary systems. 
    more » « less
    Free, publicly-accessible full text available December 16, 2024
  3. Köhler, C (Ed.)
    Daylength sensing in many plants is critical for coordinating the timing of flowering with the appropriate season. Temperate climate-adapted grasses such as Brachypodium distachyon flower during the spring when days are becoming longer. The photoreceptor PHYTOCHROME C is essential for long-day (LD) flowering in B. distachyon. PHYC is required for the LD activation of a suite of genes in the photoperiod pathway including PHOTOPERIOD1 (PPD1) that, in turn, result in the activation of FLOWERING LOCUS T (FT1)/FLORIGEN, which causes flowering. Thus, B. distachyon phyC mutants are extremely delayed in flowering. Here we show that PHYC-mediated activation of PPD1 occurs via EARLY FLOWERING 3 (ELF3), a component of the evening complex in the circadian clock. The extreme delay of flowering of the phyC mutant disappears when combined with an elf3 loss-of-function mutation. Moreover, the dampened PPD1 expression in phyC mutant plants is elevated in phyC/elf3 mutant plants consistent with the rapid flowering of the double mutant. We show that loss of PPD1 function also results in reduced FT1 expression and extremely delayed flowering consistent with results from wheat and barley. Additionally, elf3 mutant plants have elevated expression levels of PPD1, and we show that overexpression of ELF3 results in delayed flowering associated with a reduction of PPD1 and FT1 expression, indicating that ELF3 represses PPD1 transcription consistent with previous studies showing that ELF3 binds to the PPD1 promoter. Indeed, PPD1 is the main target of ELF3-mediated flowering as elf3/ppd1 double mutant plants are delayed flowering. Our results indicate that ELF3 operates downstream from PHYC and acts as a repressor of PPD1 in the photoperiod flowering pathway of B. distachyon. 
    more » « less
    Free, publicly-accessible full text available September 19, 2024
  4. Abstract

    Energetic electron precipitation (EEP) from the radiation belts into Earth's atmosphere leads to several profound effects (e.g., enhancement of ionospheric conductivity, possible acceleration of ozone destruction processes). An accurate quantification of the energy input and ionization due to EEP is still lacking due to instrument limitations of low‐Earth‐orbit satellites capable of detecting EEP. The deployment of the Electron Losses and Fields InvestigatioN (ELFIN) CubeSats marks a new era of observations of EEP with an improved pitch‐angle (0°–180°) and energy (50 keV–6 MeV) resolution. Here, we focus on the EEP recorded by ELFIN coincident with electromagnetic ion cyclotron (EMIC) waves, which play a major role in radiation belt electron losses. The EMIC‐driven EEP (∼200 keV–∼2 MeV) exhibits a pitch‐angle distribution (PAD) that flattens with increasing energy, indicating more efficient high‐energy precipitation. Leveraging the combination of unique electron measurements from ELFIN and a comprehensive ionization model known as Boulder Electron Radiation to Ionization (BERI), we quantify the energy input of EMIC‐driven precipitation (on average, ∼3.3 × 10−2 erg/cm2/s), identify its location (any longitude, 50°–70° latitude), and provide the expected range of ion‐electron production rate (on average, 100–200 pairs/cm3/s), peaking in the mesosphere—a region often overlooked. Our findings are crucial for improving our understanding of the magnetosphere‐ionosphere‐atmosphere system as they accurately specify the contribution of EMIC‐driven EEP, which serves as a crucial input to state‐of‐the‐art atmospheric models (e.g., WACCM) to quantify the accurate impact of EMIC waves on both the atmospheric chemistry and dynamics.

     
    more » « less
  5. Free, publicly-accessible full text available December 1, 2024