skip to main content


Search for: All records

Creators/Authors contains: "Li, Weihua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    While inequalities in science are common, most efforts to understand them treat scientists as isolated individuals, ignoring the network effects of collaboration. Here, we develop models that untangle the network effects of productivity defined as paper counts, and prominence referring to high-impact publications, of individual scientists from their collaboration networks. We find that gendered differences in the productivity and prominence of mid-career researchers can be largely explained by differences in their coauthorship networks. Hence, collaboration networks act as a form of social capital, and we find evidence of their transferability from senior to junior collaborators, with benefits that decay as researchers age. Collaboration network effects can also explain a large proportion of the productivity and prominence advantages held by researchers at prestigious institutions. These results highlight a substantial role of social networks in driving inequalities in science, and suggest that collaboration networks represent an important form of unequally distributed social capital that shapes who makes what scientific discoveries.

     
    more » « less
  2. Abstract

    Multicomponent nanostructured materials assembled from molecular building blocks received wide attention due to their precisely integrated multifunctionalities. However, discovery of these materials with desirable composition and morphology was limited by their low synthetic scalability and narrow structural tuning window with given building blocks. Here, we report a scalable and diversity‐oriented synthetic approach to hierarchically structured nanomaterials based on a few readily accessible building blocks. Mixed‐graft block copolymers containing sequence‐defined side chains were prepared through ring‐opening metathesis copolymerization of three or four types of macromonomers. Intramolecularly defined interfaces promoted the formation of ordered hierarchical structures with lattice sizes tunable across multiple length scales. The same set of macromonomers were arranged and combined in different ways, providing access to diverse morphologies in the resultant structures.

     
    more » « less
  3. Abstract

    Multicomponent nanostructured materials assembled from molecular building blocks received wide attention due to their precisely integrated multifunctionalities. However, discovery of these materials with desirable composition and morphology was limited by their low synthetic scalability and narrow structural tuning window with given building blocks. Here, we report a scalable and diversity‐oriented synthetic approach to hierarchically structured nanomaterials based on a few readily accessible building blocks. Mixed‐graft block copolymers containing sequence‐defined side chains were prepared through ring‐opening metathesis copolymerization of three or four types of macromonomers. Intramolecularly defined interfaces promoted the formation of ordered hierarchical structures with lattice sizes tunable across multiple length scales. The same set of macromonomers were arranged and combined in different ways, providing access to diverse morphologies in the resultant structures.

     
    more » « less
  4. Abstract

    Functional liquid metal nanoparticles (NPs), produced from eutectic alloys of gallium, promise new horizons in the fields of sensors, microfluidics, flexible electronics, catalysis, and biomedicine. Here, the development of a vapor cavity generating ultrasonic platform for nebulizing liquid metal within aqueous media for the one‐step production of stable and functional liquid metal NPs is shown. The size distribution of the NPs is fully characterized and it is demonstrated that various macro and small molecules can also be grafted onto these liquid metal NPs during the liquid‐based nebulization process. The cytotoxicity of the NPs grafted with different molecules is further explored. Moreover, it is shown that it is possible to control the thickness of the oxide layer on the produced NPs using electrochemistry that can be embedded within the platform. It is envisaged that this platform can be adapted as a cost‐effective and versatile device for the rapid production of functional liquid metal NPs for future liquid metal‐based optical, electronic, catalytic, and biomedical applications.

     
    more » « less