Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 19, 2026
-
Stretchable conductive composites (SCCs) are generally elastomer matrices filled with conductive fillers. They combine the conductivity of metals and carbon materials with the flexibility of polymers, which are attractive properties for applications such as stretchable electronics, wearable devices, and flexible sensors. Most conventional conductive composites that are filled with only one type of conductive filler face issues in mechanical and electrical properties. Recently, some studies introduced secondary fillers to create hybrid‐filler SCCs to solve these problems. The secondary fillers produce a synergistic effect with the primary fillers to enhance the electrical conductivity of the composites. They also improve the thermal conductivity and mechanical properties or impart composites with special functions like catalysis and self‐healing. Herein, the fabrication methods, stretchability enhancement strategies, and piezoresistivity of SCCs are analyzed, and their latest applications in stretchable electronics are introduced. Finally, the challenges and prospects of their development are discussed.more » « less
-
Rapid Access to Diverse Multicomponent Hierarchical Nanostructures from Mixed‐Graft Block CopolymersAbstract Multicomponent nanostructured materials assembled from molecular building blocks received wide attention due to their precisely integrated multifunctionalities. However, discovery of these materials with desirable composition and morphology was limited by their low synthetic scalability and narrow structural tuning window with given building blocks. Here, we report a scalable and diversity‐oriented synthetic approach to hierarchically structured nanomaterials based on a few readily accessible building blocks. Mixed‐graft block copolymers containing sequence‐defined side chains were prepared through ring‐opening metathesis copolymerization of three or four types of macromonomers. Intramolecularly defined interfaces promoted the formation of ordered hierarchical structures with lattice sizes tunable across multiple length scales. The same set of macromonomers were arranged and combined in different ways, providing access to diverse morphologies in the resultant structures.more » « less
An official website of the United States government
