skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Li, X"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Free, publicly-accessible full text available July 8, 2025
  3. Free, publicly-accessible full text available July 1, 2025
  4. Free, publicly-accessible full text available June 26, 2025
  5. Free, publicly-accessible full text available June 28, 2025
  6. Quasicrystals are characterized by atomic arrangements possessing long-range order without periodicity. Van der Waals (vdW) bilayers provide a unique opportunity to controllably vary atomic alignment between two layers from a periodic moir´e crystal to an aperiodic quasicrystal. Here, we reveal a remarkable consequence of the unique atomic arrangement in a dodecagonal WSe2 quasicrystal: the K and Q valleys in separate layers are brought arbitrarily close in momentum space via higher-order Umklapp scatterings. A modest perpendicular electric field is sufficient to induce strong interlayer K − Q hybridization, manifested as a new hybrid excitonic doublet. Concurrently, we observe the disappearance of the trion resonance and attribute it to quasicrystal potential driven localization. Our findings highlight the remarkable attribute of incommensurate systems to bring any pair of momenta into close proximity, thereby introducing a novel aspect to valley engineering. 
    more » « less
    Free, publicly-accessible full text available August 5, 2025
  7. International Ocean Discovery Program (IODP) Expedition 398, Hellenic Arc Volcanic Field, recovered volcanic and nonvolcanic sediments and Messinian evaporites, as well as the nonvolcanic basement. The total recovery of about 3.3 km has the potential to significantly expand our understanding of the volcanic and tectonic history of the Christiana-Santorini-Kolumbo volcanic field and the climate history of the eastern Mediterranean. Here we report semiquantitative bulk elemental analyses of X-ray fluorescence core scans for Site U1591, drilled off Christiani Island, and Site U1599, drilled off Anafi Island, and compare these to records of natural gamma radiation that were measured aboard the R/V JOIDES Resolution. 
    more » « less
    Free, publicly-accessible full text available December 12, 2025
  8. The earth abundant and environmentally friendly element iron (Fe) forms various functional materials of metallic iron, iron oxides, iron carbides, natural iron ore, and iron-based metallic-organic frameworks. The Fe-based materials have been intensively studied as oxygen carriers, catalysts, adsorbents, and additives in bioenergy production. This review was to provide a fundamental understanding of the syntheses and characteristics of various Fe-based materials for further enhancing their functionalities and facilitating their applications in various bioenergy conversion processes. The syntheses, characteristics, and applications of various iron-based materials for bioenergy conversion published in peer-reviewed articles were first reviewed. The challenges and perspectives of the wide applications of those functional materials in bioenergy conversion were then discussed. The functionalities, stability, and reactivity of Fe-based materials depend on their structures and redox phases. Furthermore, the phase and composition of iron compounds change in a process. More research is needed to analyze the complex phase and composition changes during their applications, and study the type of iron precursors, synthesizing conditions, and the use of promoters and supports to improve their performance in bioenergy conversion. More studies are also needed to develop multifunctional Fe-based materials to be used for multi-duties in a biorefinery and develop green processes to biologically, economically, and sustainably produce those functional materials at a large scale. 
    more » « less