skip to main content

Search for: All records

Creators/Authors contains: "Li, X."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2023
  2. Free, publicly-accessible full text available February 1, 2023
  3. Free, publicly-accessible full text available December 1, 2022
  4. Thermoelectric (TE) cement composite is a new type of TE material. Unlike ordinary cement, TE cement can mutually convert thermal energy to electrical energy due to the addition of carbon fibers, metal oxide nanoparticles, etc. In hot summer or cold winter, the significant temperature difference between indoor and outdoor can be used by TE cement to generate electricity. On the other hand, given power input, the same material can provide cooling/ heating to adjust room temperature. Therefore, TE cement has certain energy-saving potential in the application of building enclosures and energy systems. Its ability to convert different forms of energymore »and use low-grade energy is conducive to the operation of net-zero buildings. In this study, a novel TE cement composite, MnO2 and graphite enhanced cement, was firstly fabricated. The surface morphology of the composites was analyzed by using the images taken by scanning electron microscopy. The performance indicators of TE materials include the power factor and dimensionless figure of merit ZT The values of five TE properties were measured and calculated by a Physical Property Measurement System at different temperatures. Compared with the cement reinforced by graphite alone, it is confirmed that MnO2 nanoparticles have a positive effect on the enhancement of the TE performance for cement composites. The 5wt.% graphite and 10wt.% MnO2 enhanced cement composite achieves the highest Z.T. of 6.2 × 10-6 at 350 K.« less
  5. Free, publicly-accessible full text available September 1, 2022
  6. Single-atom catalysts (SACs) exhibit unique catalytic property and maximum atom efficiency of rare, expensive metals. A critical barrier to applications of SACs is sintering of active metal atoms under operating conditions. Anchoring metal atoms onto oxide supports via strong metal-support bonds may alleviate sintering. Such an approach, however, usually comes at a cost: stabilization results from passivation of metal sites by excessive oxygen ligation—too many open coordination sites taken up by the support, too few left for catalytic action. Furthermore, when such stabilized metal atoms are activated by reduction at elevated temperatures they become unlinked and so move and sinter,more »leading to loss of catalytic function. We report a new strategy, confining atomically dispersed metal atoms onto functional oxide nanoclusters (denoted as nanoglues) that are isolated and immobilized on a robust, high-surface-area support—so that metal atoms do not sinter under conditions of catalyst activation and/or operation. High-number-density, ultra-small and defective CeOx nanoclusters were grafted onto high-surface-area SiO2 as nanoglues to host atomically dispersed Pt. The Pt atoms remained on the CeOx nanoglue islands under both O2 and H2 environment at high temperatures. Activation of CeOx supported Pt atoms increased the turnover frequency for CO oxidation by 150 times. The exceptional stability under reductive conditions is attributed to the much stronger affinity of Pt atoms for CeOx than for SiO2—the Pt atoms can move but they are confined to their respective nanoglue islands, preventing formation of larger Pt particles. The strategy of using functional nanoglues to confine atomically dispersed metal atoms and simultaneously enhance catalytic performance of localized metal atoms is general and takes SACs one major step closer to practical applications as robust catalysts for a wide range of catalytic transformations.« less
  7. Free, publicly-accessible full text available February 1, 2023
  8. Sc 3 Mn 3 Al 7 Si 5 is a rare example of a correlated metal in which the Mn moments form a kagome lattice. The absence of magnetic ordering to the lowest temperatures suggests that geometrical frustration of magnetic interactions may lead to strong magnetic fluctuations. We have performed inelastic neutron scattering measurements on Sc 3 Mn 3 Al 7 Si 5 , finding that phonon scattering dominates for energies from ∼20–50 meV. These results are in good agreement with ab initio calculations of the phonon dispersions and densities of states, and as well reproduce the measured specific heat.more »A weak magnetic signal was detected at energies less than ∼10 meV, present only at the lowest temperatures. The magnetic signal is broad and quasielastic, as expected for metallic paramagnets.« less
    Free, publicly-accessible full text available October 12, 2022