- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0002000002000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Li, Xiaojin (4)
-
Zhang, Guo-Qiang (4)
-
Cui, Licong (3)
-
Huang, Yan (3)
-
Abeysinghe, Rashmie (1)
-
Cheng, Qiang (1)
-
Hao, Xubing (1)
-
Huang Yan (1)
-
Roberts, Kirk (1)
-
Shi, Jay (1)
-
Tao, Cui (1)
-
Yao, Xinghua (1)
-
Ye, Qiang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract ObjectiveSNOMED CT provides a standardized terminology for clinical concepts, allowing cohort queries over heterogeneous clinical data including Electronic Health Records (EHRs). While it is intuitive that missing and inaccurate subtype (or is-a) relations in SNOMED CT reduce the recall and precision of cohort queries, the extent of these impacts has not been formally assessed. This study fills this gap by developing quantitative metrics to measure these impacts and performing statistical analysis on their significance. Material and MethodsWe used the Optum de-identified COVID-19 Electronic Health Record dataset. We defined micro-averaged and macro-averaged recall and precision metrics to assess the impact of missing and inaccurate is-a relations on cohort queries. Both practical and simulated analyses were performed. Practical analyses involved 407 missing and 48 inaccurate is-a relations confirmed by domain experts, with statistical testing using Wilcoxon signed-rank tests. Simulated analyses used two random sets of 400 is-a relations to simulate missing and inaccurate is-a relations. ResultsWilcoxon signed-rank tests from both practical and simulated analyses (P-values < .001) showed that missing is-a relations significantly reduced the micro- and macro-averaged recall, and inaccurate is-a relations significantly reduced the micro- and macro-averaged precision. DiscussionThe introduced impact metrics can assist SNOMED CT maintainers in prioritizing critical hierarchical defects for quality enhancement. These metrics are generally applicable for assessing the quality impact of a terminology’s subtype hierarchy on its cohort query applications. ConclusionOur results indicate a significant impact of missing and inaccurate is-a relations in SNOMED CT on the recall and precision of cohort queries. Our work highlights the importance of high-quality terminology hierarchy for cohort queries over EHR data and provides valuable insights for prioritizing quality improvements of SNOMED CT's hierarchy.more » « less
-
Li, Xiaojin; Huang, Yan; Cui, Licong; Zhang, Guo-Qiang (, AMIA Summits on Translational Science Proceedings)
-
Zhang, Guo-Qiang; Li, Xiaojin; Huang Yan; Cui, Licong (, AMIA Annual Symposium proceedings)
-
Yao, Xinghua; Li, Xiaojin; Ye, Qiang; Huang, Yan; Cheng, Qiang; Zhang, Guo-Qiang (, Biomedical Signal Processing and Control)
An official website of the United States government

Full Text Available