skip to main content

Search for: All records

Creators/Authors contains: "Li, Xingye"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Manually annotating complex scene point cloud datasets is both costly and error-prone. To reduce the reliance on labeled data, we propose a snapshot-based self-supervised method to enable direct feature learning on the unlabeled point cloud of a complex 3D scene. A snapshot is defined as a collection of points sampled from the point cloud scene. It could be a real view of a local 3D scan directly captured from the real scene, or a virtual view of such from a large 3D point cloud dataset. First the snapshots go through a self-supervised pipeline including both part contrasting and snapshot clustering for feature learning. Then a weakly-supervised approach is implemented by training a standard SVM classifier on the learned features with a small fraction of labeled data. We evaluate the weakly-supervised approach for point cloud classification by using varying numbers of labeled data and study the minimal numbers of labeled data for a successful classification. Experiments are conducted on three public point cloud datasets, and the results have shown that our method is capable of learning effective features from the complex scene data without any labels.