skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Xinling"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. For sequencing-based spatial transcriptomics data, the gene-spot count matrix is highly sparse. This feature is similar to scRNA-seq. The goal of this paper is to identify whether there exist genes that are frequently under-detected in Visium compared to bulk RNA-seq, and the underlying potential mechanism of under-detection in Visium. We collected paired Visium and bulk RNA-seq data for 28 human samples and 19 mouse samples, which covered diverse tissue sources. We compared the two data types and observed that there indeed exists a collection of genes frequently under-detected in Visium compared to bulk RNA-seq. We performed a motif search to examine the last 350 bp of the frequently under-detected genes, and we observed that the poly (T) motif was significantly enriched in genes identified from both human and mouse data, which matches with our previous finding about frequently under-detected genes in scRNA-seq. We hypothesized that the poly (T) motif may be able to form a hairpin structure with the poly (A) tails of their mRNA transcripts, making it difficult for their mRNA transcripts to be captured during Visium library preparation. 
    more » « less
  2. One important characteristic of single-cell RNA sequencing (scRNA-seq) data is its high sparsity, where the gene-cell count data matrix contains high proportion of zeros. The sparsity has motivated widespread discussions on dropouts and missing data, as well as imputation algorithms of scRNA-seq analysis. Here, we aim to investigate whether there exist genes that are more prone to be under-detected in scRNA-seq, and if yes, what commonalities those genes may share. From public data sources, we gathered paired bulk RNA-seq and scRNA-seq data from 53 human samples, which were generated in diverse biological contexts. We derived pseudo-bulk gene expression by averaging the scRNA-seq data across cells. Comparisons of the paired bulk and pseudo-bulk gene expression profiles revealed that there indeed exists a collection of genes that are frequently under-detected in scRNA-seq compared to bulk RNA-seq. This result was robust to randomization when unpaired bulk and pseudo-bulk gene expression profiles were compared. We performed motif search to the last 350 bp of the identified genes, and observed an enrichment of poly(T) motif. The poly(T) motif toward the tails of those genes may be able to form hairpin structures with the poly(A) tails of their mRNA transcripts, making it difficult for their mRNA transcripts to be captured during scRNA-seq library preparation, which is a mechanistic conjecture of why certain genes may be more prone to be under-detected in scRNA-seq. 
    more » « less