Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 30, 2025
-
Abstract In this paper, we propose and analyze a finite-element method of variational data assimilation for a second-order parabolic interface equation on a two-dimensional bounded domain. The Tikhonov regularization plays a key role in translating the data assimilation problem into an optimization problem. Then the existence, uniqueness and stability are analyzed for the solution of the optimization problem. We utilize the finite-element method for spatial discretization and backward Euler method for the temporal discretization. Then based on the Lagrange multiplier idea, we derive the optimality systems for both the continuous and the discrete data assimilation problems for the second-order parabolic interface equation. The convergence and the optimal error estimate are proved with the recovery of Galerkin orthogonality. Moreover, three iterative methods, which decouple the optimality system and significantly save computational cost, are developed to solve the discrete time evolution optimality system. Finally, numerical results are provided to validate the proposed method.more » « lessFree, publicly-accessible full text available May 10, 2025
-
Free, publicly-accessible full text available May 1, 2025
-
In this paper, we develop a sparse grid stochastic collocation method to improve the computational efficiency in handling the steady Stokes-Darcy model with random hydraulic conductivity. To represent the random hydraulic conductivity, the truncated Karhunen-Loève expansion is used. For the discrete form in probability space, we adopt the stochastic collocation method and then use the Smolyak sparse grid method to improve the efficiency. For the uncoupled deterministic subproblems at collocation nodes, we apply the general coupled finite element method. Numerical experiment results are presented to illustrate the features of this method, such as the sample size, convergence, and randomness transmission through the interface.more » « less