skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Yi-Fan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper explores three different model components to improve predictive performance over the ViEWS benchmark: a class of neural networks that account for spatial and temporal dependencies; the use of CAMEO-coded event data; and the continuous rank probability score (CRPS), which is a proper scoring metric. We forecast changes in state based violence across Africa at the grid-month level. The results show that spatio-temporal graph convolutional neural network models offer consistent improvements over the benchmark. The CAMEO-coded event data sometimes improve performance, but sometimes decrease performance. Finally, the choice of performance metric, whether it be the mean squared error or a proper metric such as the CRPS, has an impact on model selection. Each of these components–algorithms, measures, and metrics–can improve our forecasts and understanding of violence. 
    more » « less
  2. Time series forecasting with additional spatial information has attracted a tremendous amount of attention in recent research, due to its importance in various real-world applications on social studies, such as conflict prediction and pandemic forecasting. Conventional machine learning methods either consider temporal dependencies only, or treat spatial and temporal relations as two separate autoregressive models, namely, space-time autoregressive models. Such methods suffer when it comes to long-term forecasting or predictions for large-scale areas, due to the high nonlinearity and complexity of spatio-temporal data. In this paper, we propose to address these challenges using spatio-temporal graph neural networks. Empirical results on Violence Early Warning System (ViEWS) dataset and U.S. Covid-19 dataset indicate that our method significantly improved performance over the baseline approaches. 
    more » « less