Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper focuses on the system identification of an important class of nonlinear systems: nonlinear systems that are linearly parameterized, which enjoy wide applications in robotics and other mechanical systems. We consider two system identification methods: least-squares estimation (LSE), which is a point estimation method; and set-membership estimation (SME), which estimates an uncertainty set that contains the true parameters. We provide non-asymptotic convergence rates for LSE and SME under i.i.d. control inputs and control policies with i.i.d. random perturbations, both of which are considered as non-active-exploration inputs. Compared with the counter-example based on piecewise-affine systems in the literature, the success of non-active exploration in our setting relies on a key assumption about the system dynamics: we require the system functions to be real-analytic. Our results, together with the piecewise-affine counter-example, reveal the importance of differentiability in nonlinear system identification through non-active exploration. Lastly, we numerically compare our theoretical bounds with the empirical performance of LSE and SME on a pendulum example and a quadrotor example.more » « lessFree, publicly-accessible full text available December 28, 2025
-
null (Ed.)Biopolymer composites based on silk fibroin have shown widespread potential due to their brilliant applications in tissue engineering, medicine and bioelectronics. In our present work, biocomposite nanofilms with different special topologies were obtained through blending silk fibroin with crystallizable poly(L-lactic acid) (PLLA) at various mixture rates using a stirring-reflux condensation blending method. The microstructure, phase components, and miscibility of the blended films were studied through thermal analysis in combination with Fourier-transform infrared spectroscopy and Raman analysis. X-ray diffraction and scanning electron microscope were also used for advanced structural analysis. Furthermore, their conformation transition, interaction mechanism, and thermal stability were also discussed. The results showed that the hydrogen bonds and hydrophobic interactions existed between silk fibroin (SF) and PLLA polymer chains in the blended films. The secondary structures of silk fibroin and phase components of PLLA in composites vary at different ratios of silk to PLLA. The β-sheet content increased with the increase of the silk fibroin content, while the glass transition temperature was raised mainly due to the rigid amorphous phase presence in the blended system. This results in an increase in thermal stability in blended films compared to the pure silk fibroin films. This study provided detailed insights into the influence of synthetic polymer phases (crystalline, rigid amorphous, and mobile amorphous) on protein secondary structures through blending, which has direct applications on the design and fabrication of novel protein–synthetic polymer composites for the biomedical and green chemistry fields.more » « less