skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Li, Yixuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 24, 2025
  2. Free, publicly-accessible full text available March 1, 2025
  3. Free, publicly-accessible full text available May 1, 2025
  4. Zhou, Kaiyang (Ed.)
    Free, publicly-accessible full text available February 1, 2025
  5. Free, publicly-accessible full text available February 13, 2025
  6. Modern machine learning models deployed in the wild can encounter both covariate and semantic shifts, giving rise to the problems of out-of-distribution (OOD) generalization and OOD detection respectively. While both problems have received significant research attention lately, they have been pursued independently. This may not be surprising, since the two tasks have seemingly conflicting goals. This paper provides a new unified approach that is capable of simultaneously generalizing to covariate shifts while robustly detecting semantic shifts. We propose a margin-based learning framework that exploits freely available unlabeled data in the wild that captures the environmental test-time OOD distributions under both covariate and semantic shifts. We show both empirically and theoretically that the proposed margin constraint is the key to achieving both OOD generalization and detection. Extensive experiments show the superiority of our framework, outperforming competitive baselines that specialize in either OOD generalization or OOD detection. Code is publicly available at https://github.com/deeplearning-wisc/scone. 
    more » « less
  7. Artificial intelligence (AI) has impacted human life at many levels, entailing economic and societal changes. AI algorithms are increasingly used by organizations to generate predictions that feed into decisions (e.g., who is eligible for insurance coverage, approved for bank loans, selected for job interviews). Since the data used for developing the algorithms can contain bias such as gender or racial prejudice, AI predictions can become discriminatory. For-profit and not-for-profit organizations face the hurdles of developing, applying, and maintaining governance of AI, making sure that goal optimization responds to ethical and fairness values.

     
    more » « less
  8. Out-of-distribution (OOD) detection is important for machine learning models deployed in the wild. Recent methods use auxiliary outlier data to regularize the model for improved OOD detection. However, these approaches make a strong distributional assumption that the auxiliary outlier data is completely separable from the in-distribution (ID) data. In this paper, we propose a novel framework that leverages wild mixture data -- that naturally consists of both ID and OOD samples. Such wild data is abundant and arises freely upon deploying a machine learning classifier in their \emph{natural habitats}. Our key idea is to formulate a constrained optimization problem and to show how to tractably solve it. Our learning objective maximizes the OOD detection rate, subject to constraints on the classification error of ID data and on the OOD error rate of ID examples. We extensively evaluate our approach on common OOD detection tasks and demonstrate superior performance. 
    more » « less