skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Li, Zhenpeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In our previous study, electrically induced mechanical stress was produced on monolithic polycarbonate (PC) films under a DC voltage using a needle‐plane electrode setup. This study investigated other materials with various structures and dielectric constants, in order to further understand the deformation mechanism. It was found that the elastic behavior occurred at electric fields intensities below that initiating measurable surface deformation. The amorphous materials, PS, and the semi‐crystalline materials, HDPE and PP, having dielectric constants all around 2.5, exhibited a similar observable deformation onset electric field at 200 MV/m. While PVDF, having a dielectric constant of 10.0–12.0, showed an onset at only 30 MV/m. The data was also compared to our previous study on PC. The depth and diameter of the deformation for all materials increased relative to the applied electric field up to film breakdown. Thermal annealing of the deformed films revealed a recoverable “delayed elastic” component and an irreversible “plastic” component. A three‐stage electrically induced mechanical deformation mechanism was proposed for amorphous materials, while a two‐stage mechanism was proposed for the semi‐crystalline materials. The difference on the energy loss versus deformed volume for amorphous and semi‐crystalline polymers was also determined and discussed.

     
    more » « less
  2. ABSTRACT

    Electrically induced mechanical stress was produced on a monolithic polycarbonate (PC) film when subjected to an instantaneous direct current voltage using a needle‐plane electrode setup. Three different experimental methods were used to investigate the electrically induced mechanical deformation on the glassy PC film, namely, morphological observation, energy loss analysis, and dielectric hysteresis study. It was found that the PC film exhibited elastic behavior at the nominal electric field below 200 MV m−1, showing no indentation on the film surface. When the nominal field was above 200 MV m−1, a spherical indentation was created. The depth and diameter of the deformation increased in response to the applied electric field. Subsequent thermal annealing of the deformed film revealed a recoverable “delayed elastic” and an unrecoverable “plastic” deformation. A three‐stage electrically induced mechanical deformation mechanism was proposed based on the experimental results, including a correlation between the energy loss and the deformed volume. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2020,137, 48341.

     
    more » « less
  3. ABSTRACT

    The compatibilization effect of linear low‐density polyethylene‐grafted maleic anhydride (LLDPEgMA) and high‐density polyethylene‐grafted maleic anhydride (HDPEgMA) on high‐density polyethylene (HDPE)/polyamide 6 (Nylon 6) blend system is investigated. The morphology of 45 wt %/55 wt % polyethylene/Nylon 6 blends with three compatibilizer compositions (5 wt %, 10 wt %, and 15 wt %) are characterized by atomic force microscopic (AFM) phase imaging. The blend with 5 wt % LLDPEgMA demonstrates a Nylon 6 continuous, HDPE dispersed morphology. Increased amount of LLDPEgMA leads to sharp transition in morphology to HDPE continuous, Nylon 6 dispersed morphology. Whereas, increasing HDPEgMA concentration in the same blends results in gradual morphology transition from Nylon 6 continuous to co‐continuous morphology. The mechanical properties, oxygen permeability, and water vapor permeability are measured on the blends which confirm the morphology and indicate that HDPEgMA is a better compatibilizer than LLDPEgMA for the HDPE/Nylon 6 blend system. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 281–290

     
    more » « less
  4. ABSTRACT

    High oxygen barrier film/foam system had been developed using multilayer coextrusion technology. The film/foams contained alternating ethylene–vinyl alcohol (EVOH) copolymer film layers and low‐density polyethylene (LDPE) foam layers. To ensure good adhesion and layer integrity, the LDPE was preblended with LDPE grafted maleic anhydride. The layered structure of film/foam was characterized by scanning electron microscopy. The film/foams showed adjustable density, oxygen permeability, and mechanical properties by changing the film and foam composition. Film/foam with 10% EVOH film layer was successfully thermoformed at room temperature. The cells in the foam layer were observed to deform during the mechanical forming process. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2018,135, 46425.

     
    more » « less
  5. ABSTRACT

    Advanced film capacitors require polymers with high thermal stability, high breakdown strength, and low loss for high temperature dielectric applications. To fulfill such requirements, two polymer multilayer film systems were coextruded via the forced assembly technique. High glass transition temperature (Tg) polycarbonate (HTPC,Tg = 165 °C) and polysulfone (PSF,Tg = 185 °C) were multilayered with a high dielectric constant polymer, poly(vinylidene fluoride) (PVDF), respectively. The PSF/PVDF system was more thermally stable than the HTPC/PVDF system because of the higherTgfor PSF. At temperatures lower than 170 °C, the HTPC/PVDF system exhibited comparable breakdown strength and hysteresis loss as the PSF/PVDF system. While at temperatures above 170 °C, the PSF/PVDF system exhibited a higher breakdown strength because of the higherTgof PSF. The electric displacement‐electric field (D‐E) loop behavior of the PSF/PVDF system was studied as a function of temperature. Moreover, a melt‐recrystallization process could further decrease the hysteresis loss for the PSF/PVDF system due to better edge‐on crystal orientation. These results demonstrate that PSF/PVDF and HTPC/PVDF systems are applicable for high temperature film capacitors. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2019,136, 47535.

     
    more » « less