skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Zhouzhou"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Node Authentication and Key Distribution are two tightly correlated security tasks for a secure Body Area Networks (BAN) system. Handling them separately may cause many practical issues. Based on the recent advances on node authentication and (shared) key distribution (including key generation), we propose a new integrated method to securely and efficiently conduct the two tasks. We build a system model with the consideration of passive and active attacks and solve some security risks. One of performance metric, key generation rate is significantly improved in our method. We implement and verify the proposed methods on two test beds. The experimental result demonstrates the effectiveness and efficiency of our proposal. 
    more » « less
  2. null (Ed.)
    Securely growing or de-growing nodes is a mandatory requirement to manage Wireless Body Area Networks (WBANs). This requirement raises significant challenges in node authentication, backward node authentication, initial node configuration, and node de-growth. Unlike the traditional approaches using pre-stored secrets or relying on special authentication hardware, we explore the characteristics of WBAN and wireless signal to develop an efficient scheme for adding/removing WBAN node securely and effectively. The major idea of the proposed scheme is to construct a 'virtual' dual-antennae proximity detection system by fully utilizing the existing legitimate nodes and the behavior of human body. We built a system prototype on wireless devices and verified our scheme through experiments. In addition, a data mining (clustering) algorithm is also applied to successfully detect newly joined legitimate node and identify potential attackers. 
    more » « less