skip to main content

Search for: All records

Creators/Authors contains: "Lian, Biao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Kagome lattices host flat bands due to their frustrated lattice geometry, which leads to destructive quantum interference of electron wave functions. Here, we report imaging of the kagome flat band localization in real-space using scanning tunneling microscopy. We identify both the Fe3Sn kagome lattice layer and the Sn2honeycomb layer with atomic resolution in kagome antiferromagnet FeSn. On the Fe3Sn lattice, at the flat band energy determined by the angle resolved photoemission spectroscopy, tunneling spectroscopy detects an unusual state localized uniquely at the Fe kagome lattice network. We further show that the vectorial in-plane magnetic field manipulates the spatial anisotropy of the localization state within each kagome unit cell. Our results are consistent with the real-space flat band localization in the magnetic kagome lattice. We further discuss the magnetic tuning of flat band localization under the spin–orbit coupled magnetic kagome lattice model.

    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available March 1, 2024
  3. Free, publicly-accessible full text available December 22, 2023
  4. We investigate the homogeneous chiral edge theory of the filling ν = 4 / 3 fractional quantum Hall state, which is parameterized by a Luttinger liquid velocity matrix and an electron tunneling amplitude (ignoring irrelevant terms). We identify two solvable cases: one case where the theory gives two free chiral boson modes, and the other case where the theory yields one free charge 2 e 3 chiral fermion and two free chiral Bogoliubov (Majorana) fermions. For generic parameters, the energy spectrum from our exact diagonalization shows Poisson level spacing statistics (LSS) in each conserved charge and momentum sector, indicating the existence of hidden conserved quantities and the possibility that the generic edge theory of the ν = 4 / 3 fractional quantum Hall state is integrable. We further show that a global symmetry preserving irrelevant nonlinear kinetic term will lead to the transition of LSS from Poisson to Wigner-Dyson at high energies. This further supports the possibility that the model without irrelevant terms is integrable. 
    more » « less
  5. Free, publicly-accessible full text available January 1, 2024
  6. null (Ed.)