skip to main content


Search for: All records

Creators/Authors contains: "Liang, Hengdi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Copper (Cu) is an important micronutrient for marine organisms, which can also be toxic at elevated concentrations. Here, we present a new model of global ocean Cu biogeochemical cycling, constrained by GEOTRACES observations, with key processes including sources from rivers, dust, and sediments, biological uptake and remineralization of Cu, reversible scavenging of Cu onto sinking particles, conversion of Cu between labile and inert species, and ocean circulation. In order for the model to match observations, in particular the relatively small increase in Cu concentrations along the global “conveyor belt,” we find it is necessary to include significant external sources of Cu with a magnitude of roughly 1.3 Gmol yr−1, having a relatively stronger impact on the Atlantic Ocean, though the relative contributions of river, dust, and sediment sources are poorly constrained. The observed nearly linear increase in Cu concentrations with depth requires a strong benthic source of Cu, which includes the sedimentary release of Cu that was reversibly scavenged from the water column. The processes controlling Cu cycling in the Arctic Ocean appear to be unique, requiring both relatively high Cu concentrations in Arctic rivers and reduced scavenging in the Arctic. Observed partitioning of Cu between labile and inert phases is reproduced in the model by the slow conversion of labile Cu to inert in the whole water column with a half‐life of ∼250 years, and the photodegradation of inert Cu to labile in the surface ocean with a minimum half‐life of ∼2 years at the equator.

     
    more » « less
  2. Abstract. Spatially distant sources of neodymium (Nd) to the ocean that carry different isotopic signatures (εNd) have been shown to trace out major water masses and have thus been extensively used to study large-scale features of the ocean circulation both past and current. While the global marine Nd cycle is qualitatively well understood, a complete quantitative determination of all its components and mechanisms, such as the magnitude of its sources and the paradoxical conservative behavior of εNd, remains elusive. To make sense of the increasing collection of observational Nd and εNd data, in this model description paper we present and describe the Global Neodymium Ocean Model (GNOM) v1.0, the first inverse model of the global marine biogeochemical cycle of Nd. The GNOM is embedded in a data-constrained steady-state circulation that affords spectacular computational efficiency, which we leverage to perform systematic objective optimization, allowing us to make preliminary estimates of biogeochemical parameters. Owing to its matrix representation, the GNOM model is additionally amenable to novel diagnostics that allow us to investigate open questions about the Nd cycle with unprecedented accuracy. This model is open-source and freely accessible, is written in Julia, and its code is easily understandable and modifiable for further community developments, refinements, and experiments. 
    more » « less
  3. Abstract

    Ocean alkalinity plays a fundamental role in the apportionment of CO2between the atmosphere and the ocean. The primary driver of the ocean's vertical alkalinity distribution is the formation of calcium carbonate (CaCO3) by organisms at the ocean surface and its dissolution at depth. This so‐called “CaCO3counterpump” is poorly constrained, however, both in terms of how much CaCO3is exported from the surface ocean, and at what depth it dissolves. Here, we created a steady‐state model of global ocean alkalinity using Ocean Circulation Inverse Model transport, biogeochemical cycling, and field‐tested calcite and aragonite dissolution kinetics. We find that limiting CaCO3dissolution to below the aragonite and calcite saturation horizons cannot explain excess alkalinity in the upper ocean, and that models allowing dissolution above the saturation horizons best match observations. Linking dissolution to organic matter respiration, or imposing a constant dissolution rate both produce good model fits. Our best performing models require export between 1.1 and 1.8 Gt PIC y−1(from 73 m), but all converge to 1.0 Gt PIC y−1export at 279 m, indicating that both high‐ and low‐export scenarios can match observations, as long as high export is coupled to high dissolution in the upper ocean. These results demonstrate that dissolution is not a simple function of seawater CaCO3saturation (Ω) and calcite or aragonite solubility, and that other mechanisms, likely related to the biology and ecology of calcifiers, must drive significant dissolution throughout the water column.

     
    more » « less
  4. Abstract

    The Thomas Fire began on December 4, 2017 and burned 281,893 acres over a 40‐day period in Ventura and Santa Barbara Counties, making it one of California's most destructive wildfires to date. A major rainstorm then caused a flash flood event, which led to the containment of the fire. Both airborne ash from the fire and the runoff from the flash flood entered into the Santa Barbara Basin (SBB). Here, we present the results from aerosol, river, and seawater studies of black carbon and metal delivery to the SBB associated with the fire and subsequent flash flood. On day 11 of the Thomas Fire, aerosols sampled under the smoke plume were associated with high levels of PM2.5, levoglucosan, and black carbon (average: 49 μg/m3, 1.05 μg/m3, and 14.93 μg/m3, respectively) and aerosol metal concentrations were consistent with a forest fire signature. Metal concentrations in SBB surface seawater were higher closer to the coastal perimeter of the fire (including 2.22 nM Fe) than further off the coast, suggesting a dependence on continental proximity rather than fire inputs. On days 37–40 of the fire, before, during, and after the flash flood in the Ventura River, dissolved organic carbon, dissolved black carbon, and dissolved metal concentrations were positively correlated with discharge allowing us to estimate the input of fire products into the coastal ocean. We estimated rapid aerosol delivery during the fire event to be the larger share of fire‐derived metal transport compared to runoff from the Ventura River during the flood event.

     
    more » « less