skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liang, Liang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding the petrological and geochemical processes shaping the Moho transition zone (MTZ) is crucial for advancing our knowledge of thermal and chemical exchanges between the oceanic crust and the residual upper mantle. In this study, we systematically investigate the MTZ outcropped within the Zedong ophiolite, located in the eastern part of the Yarlung-Tsangpo Suture Zone (YTSZ), with the aim of at reconstructing the magmatic processes responsible for generating the petrological Moho. The Zedong MTZ comprises a sequence of dunite, wehrlite, pyroxenite, and gabbro, with frequent occurrences of clinopyroxene-rich lithologies. Cyclicity within the MTZ sequences is characterized by the recurrence of olivine-rich intervals and the presence of zig-zag patterns in both major and trace elements of clinopyroxenes. Zircon Usingle bondPb dating on the Zedong gabbros supports the coeval formation of the Zedong ophiolite with other YTSZ ophiolites. Clinopyroxene in the Zedong MTZ follows a differentiation sequence characterized by an increase in contents of Al2O3 and TiO2, coupled with a decrease in Mg#. This differentiation sequence along with frequent occurrences of amphibole suggest the evolution of a primitive hydrous melt depleted in Al2O3, TiO2, and Na2O. The depleted Ndsingle bondHf isotopes and rare earth element patterns of the MTZ rocks indicate that their parental magmas originated from fluid-enhanced re-melting of a previously depleted mantle. Additionally, we proposed that the initiation of a new subduction zone results in the re-melting of the mantle peridotite, leading to the formation of primitive hydrous basaltic melts. The variable lithologies observed in the Zedong MTZ arise from fractional crystallization and repeated replenishment of hydrous melts. 
    more » « less
  2. Our polyvinyl alcohol feedstock was prepared through carbic anhydride functionalization, UV curing during direct ink writing, and base treatment. The scaffold exhibited mechanical properties similar to pelvic floor tissue. 
    more » « less
    Free, publicly-accessible full text available January 14, 2026
  3. null (Ed.)
  4. null (Ed.)
    Accurate phenological information is essential for monitoring crop development, predicting crop yield, and enhancing resilience to cope with climate change. This study employed a curve-change-based dynamic threshold approach on NDVI (Normalized Differential Vegetation Index) time series to detect the planting and harvesting dates for corn and soybean in Kentucky, a typical climatic transition zone, from 2000 to 2018. We compared satellite-based estimates with ground observations and performed trend analyses of crop phenological stages over the study period to analyze their relationships with climate change and crop yields. Our results showed that corn and soybean planting dates were delayed by 0.01 and 0.07 days/year, respectively. Corn harvesting dates were also delayed at a rate of 0.67 days/year, while advanced soybean harvesting occurred at a rate of 0.05 days/year. The growing season length has increased considerably at a rate of 0.66 days/year for corn and was shortened by 0.12 days/year for soybean. Sensitivity analysis showed that planting dates were more sensitive to the early season temperature, while harvesting dates were significantly correlated with temperature over the entire growing season. In terms of the changing climatic factors, only the increased summer precipitation was statistically related to the delayed corn harvesting dates in Kentucky. Further analysis showed that the increased corn yield was significantly correlated with the delayed harvesting dates (1.37 Bu/acre per day) and extended growing season length (1.67 Bu/acre per day). Our results suggested that seasonal climate change (e.g., summer precipitation) was the main factor influencing crop phenological trends, particularly corn harvesting in Kentucky over the study period. We also highlighted the critical role of changing crop phenology in constraining crop production, which needs further efforts for optimizing crop management practices. 
    more » « less