- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
He, Pengcheng (2)
-
Liang, Xingyun (2)
-
Liu, Hui (2)
-
Ye, Qing (2)
-
Bakpa, Emily P (1)
-
BassiriRad, Hormoz (1)
-
Deng, Qi (1)
-
Ellsworth, David S (1)
-
Gao, Xinbo (1)
-
Jin, Yi (1)
-
Liu, Xiaorong (1)
-
Lu, Xiankai (1)
-
Mo, Jiangming (1)
-
Novick, Kimberly A (1)
-
Phillips, Richard P (1)
-
Tang, Weize (1)
-
Terrer, César (1)
-
Wang, Dong (1)
-
Wen, Yin (1)
-
You, Chengming (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A mechanistic understanding of plant photosynthetic response is needed to reliably predict changes in terrestrial carbon (C) gain under conditions of chronically elevated atmospheric nitrogen (N) deposition. Here, using 2,683 observations from 240 journal articles, we conducted a global meta‐analysis to reveal effects of N addition on 14 photosynthesis‐related traits and affecting moderators. We found that across 320 terrestrial plant species, leaf N was enhanced comparably on mass basis (Nmass, +18.4%) and area basis (Narea, +14.3%), with no changes in specific leaf area or leaf mass per area. Total leaf area (TLA) was increased significantly, as indicated by the increases in total leaf biomass (+46.5%), leaf area per plant (+29.7%), and leaf area index (LAI, +24.4%). To a lesser extent than for TLA, N addition significantly enhanced leaf photosynthetic rate per area (Aarea, +12.6%), stomatal conductance (gs, +7.5%), and transpiration rate (E, +10.5%). The responses ofAareawere positively related with that ofgs, with no changes in instantaneous water‐use efficiency and only slight increases in long‐term water‐use efficiency (+2.5%) inferred from13C composition. The responses of traits depended on biological, experimental, and environmental moderators. As experimental duration and N load increased, the responses of LAI andAareadiminished while that ofEincreased significantly. The observed patterns of increases in both TLA andEindicate that N deposition will increase the amount of water used by plants. Taken together, N deposition will enhance gross photosynthetic C gain of the terrestrial plants while increasing their water loss to the atmosphere, but the effects on C gain might diminish over time and that on plant water use would be amplified if N deposition persists.more » « less
-
Liu, Xiaorong; Yu, Kailiang; Liu, Hui; Phillips, Richard P; He, Pengcheng; Liang, Xingyun; Tang, Weize; Terrer, César; Novick, Kimberly A; Bakpa, Emily P; et al (, New Phytologist)Summary It is well‐known that the mycorrhizal type of plants correlates with different modes of nutrient cycling and availability. However, the differences in drought tolerance between arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) plants remains poorly characterized.We synthesized a global dataset of four hydraulic traits associated with drought tolerance of 1457 woody species (1139 AM and 318 EcM species) at 308 field sites. We compared these traits between AM and EcM species, with evolutionary history (i.e. angiosperms vs gymnosperms), water availability (i.e. aridity index) and biomes considered as additional factors.Overall, we found that evolutionary history and biogeography influenced differences in hydraulic traits between mycorrhizal types. Specifically, we found that (1) AM angiosperms are less drought‐tolerant than EcM angiosperms in wet regions or biomes, but AM gymnosperms are more drought‐tolerant than EcM gymnosperms in dry regions or biomes, and (2) in both angiosperms and gymnosperms, variation in hydraulic traits as well as their sensitivity to water availability were higher in AM species than in EcM species.Our results suggest that global shifts in water availability (especially drought) may alter the biogeographic distribution and abundance of AM and EcM plants, with consequences for ecosystem element cycling and ultimately, the land carbon sink.more » « lessFree, publicly-accessible full text available December 1, 2025
An official website of the United States government
