skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liao, Gang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. File systems that store metadata on a single machine or via a shared-disk abstraction face scalability challenges, especially in contexts demanding the management of billions of files. Recent work has shown that employing shared-nothing, distributed database system (DDBMS) for metadata storage can alleviate these scalability challenges without compromising on high availability guarantees. However, for low-scale deployments -- where metadata can fit in memory on a single machine -- these DDBMS-based systems typically perform an order of magnitude worse than systems that store metadata in memory on a single machine. This has limited the impact of these distributed database approaches, since they are only currently applicable to file systems of extreme scale. This paper describes FileScale, a three-tier architecture that incorporates a DDBMS as part of a comprehensive approach to file system metadata management. In contrast to previous approaches, FileScale performs comparably to the single-machine architecture at a small scale, while enabling linear scalability as the file system metadata increases. 
    more » « less
  2. null (Ed.)
    BullFrog is a relational DBMS that supports single-step schema migrations --- even those that are backwards incompatible --- without downtime, and without need for advanced warning. When a schema migration is submitted, BullFrog initiates a logical switch to the new schema, but physically migrates affected data lazily, as it is accessed by incoming transactions. BullFrog's internal concurrency control algorithms and data structures enable concurrent processing of schema migration operations with post-migration transactions, while ensuring exactly-once migration of all old data into the physical layout required by the new schema. BullFrog is implemented as an open source extension to PostgreSQL. Experiments using this prototype over a TPC-C based workload (supplemented to include schema migrations) show that BullFrog can achieve zero-downtime migration to non-trivial new schemas with near-invisible impact on transaction throughput and latency. 
    more » « less