skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liao, H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a new volatility basis set (VBS) representation of aromatic secondary organic aerosol (SOA) for atmospheric chemistry models by fitting a statistical oxidation model with aerosol microphysics (SOM‐TOMAS) to results from laboratory chamber experiments. The resulting SOM‐VBS scheme also including previous work on SOA formation from semi‐ and intermediate volatile organic compounds (S/IVOCs) is implemented in the GEOS‐Chem chemical transport model and applied to simulation of observations from the Korea‐United States Air Quality Study (KORUS‐AQ) field campaign over South Korea in May–June 2016. Our SOM‐VBS scheme can simulate the KORUS‐AQ organic aerosol (OA) observations from aircraft and surface sites better than the default schemes used in GEOS‐Chem including for vertical profiles, diurnal cycle, and partitioning between hydrocarbon‐like OA and oxidized OA. Our results confirm the important contributions of oxidized primary OA and aromatic SOA found in previous analyses of the KORUS‐AQ data and further show a large contribution from S/IVOCs. Model source attribution of OA in surface air over South Korea indicates one third from domestic anthropogenic emissions, with a large contribution from toluene and xylenes, one third from external anthropogenic emissions, and one third from natural emissions. 
    more » « less
  2. Example-guided image synthesis has been recently attempted to synthesize an image from a semantic label map and an exemplary image. In the task, the additional exemplary image serves to provide style guidance that controls the appearance of the synthesized output. Despite the controllability advantage, the previous models are designed on datasets with specific and roughly aligned objects. In this paper, we tackle a more challenging and general task, where the exemplar is an arbitrary scene image that is semantically unaligned to the given label map. To this end, we first propose a new Masked Spatial-Channel Attention (MSCA) module which models the correspondence between two unstructured scenes via cross-attention. Next, we propose an end-to-end network for joint global and local feature alignment and synthesis. In addition, we propose a novel patch-based self-supervision scheme to enable training. Experiments on the large-scale CCOO-stuff dataset show significant improvements over existing methods. Moreover, our approach provides interpretability and can be readily extended to other tasks including style and spatial interpolation or extrapolation, as well as other content manipulation. 
    more » « less
  3. Abstract The Pandora Software Development Kit and algorithm libraries perform reconstruction of neutrino interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at the Deep Underground Neutrino Experiment, which will operate four large-scale liquid argon time projection chambers at the far detector site in South Dakota, producing high-resolution images of charged particles emerging from neutrino interactions. While these high-resolution images provide excellent opportunities for physics, the complex topologies require sophisticated pattern recognition capabilities to interpret signals from the detectors as physically meaningful objects that form the inputs to physics analyses. A critical component is the identification of the neutrino interaction vertex. Subsequent reconstruction algorithms use this location to identify the individual primary particles and ensure they each result in a separate reconstructed particle. A new vertex-finding procedure described in this article integrates a U-ResNet neural network performing hit-level classification into the multi-algorithm approach used by Pandora to identify the neutrino interaction vertex. The machine learning solution is seamlessly integrated into a chain of pattern-recognition algorithms. The technique substantially outperforms the previous BDT-based solution, with a more than 20% increase in the efficiency of sub-1 cm vertex reconstruction across all neutrino flavours. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  4. A<sc>bstract</sc> A search for beyond-the-standard-model neutral Higgs bosons decaying to a pair of bottom quarks, and produced in association with at least one additional bottom quark, is performed with the CMS detector. The data were recorded in proton-proton collisions at a centre-of-mass energy of 13 TeV at the CERN LHC and correspond to an integrated luminosity of 36.7–126.9 fb−1, depending on the probed mass range. No signal above the standard model background expectation is observed. Upper limits on the production cross section times branching fraction are set for Higgs bosons in the mass range of 125–1800 GeV. The results are interpreted in benchmark scenarios of the minimal supersymmetric standard model, as well as suitable classes of two-Higgs-doublet models. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  5. The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on Ar 40 and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called “brems flipping,” as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE’s burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  6. A<sc>bstract</sc> The measurements of the Higgs boson (H) production cross sections performed by the CMS Collaboration in the four-lepton (4ℓ, ℓ= e,μ) final state at a center-of-mass energy$$\sqrt{s}$$= 13.6 TeV are presented. These measurements are based on data collected with the CMS detector at the CERN LHC in 2022, corresponding to an integrated luminosity of 34.7 fb−1. Cross sections are measured in a fiducial region closely matching the experimental acceptance, both inclusively and differentially, as a function of the transverse momentum and the absolute value of the rapidity of the four-lepton system. The H → ZZ → 4ℓinclusive fiducial cross section is measured to be$${2.89}_{-0.49}^{+0.53}{\left({\text{stat}}\right)}_{-0.21}^{+0.29}\left({\text{syst}}\right)$$fb, in agreement with the standard model expectation of$${3.09}_{-0.24}^{+0.27}$$fb. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  7. A measurement of the Higgs boson mass and width via its decay to two Z bosons is presented. Proton-proton collision data collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb 1 at a center-of-mass energy of 13 TeV, is used. The invariant mass distribution of four leptons in the on-shell Higgs boson decay is used to measure its mass and constrain its width. This yields the most precise single measurement of the Higgs boson mass to date, 125.04 ± 0.12 GeV , and an upper limit on the width Γ H < 330 MeV at 95% confidence level. A combination of the on- and off-shell Higgs boson production decaying to four leptons is used to determine the Higgs boson width, assuming that no new virtual particles affect the production, a premise that is tested by adding new heavy particles in the gluon fusion loop model. This result is combined with a previous CMS analysis of the off-shell Higgs boson production with decay to two leptons and two neutrinos, giving a measured Higgs boson width of 3.0 1.5 + 2.0 MeV , in agreement with the standard model prediction of 4.1 MeV. The strength of the off-shell Higgs boson production is also reported. The scenario of no off-shell Higgs boson production is excluded at a confidence level corresponding to 3.8 standard deviations. © 2025 CERN, for the CMS Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  8. A<sc>bstract</sc> A search for heavy, long-lived, charged particles with large ionization energy loss within the silicon tracker of the CMS experiment is presented. A data set of proton-proton collisions at a center of mass energy at$$ \sqrt{s} $$ s = 13 TeV, collected in 2017 and 2018 at the CERN LHC, corresponding to an integrated luminosity of 101 fb−1, is used in this analysis. Two different approaches for the search are taken. A new method exploits the independence of the silicon pixel and strips measurements, while the second method improves on previous techniques using ionization to determine a mass selection. No significant excess of events above the background expectation is observed. The results are interpreted in the context of the pair production of supersymmetric particles, namely gluinos, top squarks, and tau sleptons, and of the Drell-Yan pair production of fourth generation (τ′) leptons with an electric charge equal to or twice the absolute value of the electron charge (e). An interpretation of a Z’ boson decaying to twoτ′ leptons with an electric charge equal to 2eis presented for the first time. The 95% confidence upper limits on the production cross section are extracted for each of these hypothetical particles. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  9. Free, publicly-accessible full text available April 1, 2026
  10. A<sc>bstract</sc> Measurements of fiducial and total inclusive cross sections for W and Z boson production are presented in proton-proton collisions at$$ \sqrt{s} $$ s = 5.02 and 13 TeV. Electron and muon decay modes (ℓ= e orμ) are studied in the data collected with the CMS detector in 2017, in dedicated runs with reduced instantaneous luminosity. The data sets correspond to integrated luminosities of 298 ± 6 pb−1at 5.02 TeV and 206 ± 5 pb−1at 13 TeV. Measured values of the products of the total inclusive cross sections and the branching fractions at 5.02 TeV areσ(pp→W + X)$$ \mathcal{B} $$ B (W→ ℓν) = 7300±10 (stat)±60 (syst)±140 (lumi) pb, andσ(pp→Z+X)$$ \mathcal{B} $$ B (Z→ ℓ+) = 669±2 (stat)±6 (syst)±13 (lumi) pb for the dilepton invariant mass in the range of 60–120 GeV. The corresponding results at 13 TeV are 20480±10 (stat)±170 (syst)±470 (lumi) pb and 1952±4 (stat)±18 (syst)±45 (lumi) pb. The measured values agree with cross section calculations at next-to-next-to-leading-order in perturbative quantum chromodynamics. Fiducial and total inclusive cross sections, ratios of cross sections of W+and Wproduction as well as inclusive W and Z boson production, and ratios of these measurements at 5.02 and 13 TeV are reported. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026