skip to main content


Search for: All records

Creators/Authors contains: "Liao, Irene T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary

    Although the evolution of the selfing syndrome often involves reductions in floral size, pollen and nectar, few studies of selfing syndrome divergence have examined nectar. We investigate whether nectar traits have evolved independently of other floral size traits in the selfing syndrome, whether nectar traits diverged due to drift or selection, and the extent to which quantitative trait locus (QTL) analyses predict genetic correlations.

    We use F5 recombinant inbred lines (RILs) generated from a cross betweenIpomoea cordatotrilobaandIpomoea lacunosa. We calculate genetic correlations to identify evolutionary modules, test whether trait divergence was due to selection, identify QTLs and perform correlation analyses to evaluate how well QTL properties reflect genetic correlations.

    Nectar and floral size traits form separate evolutionary modules. Selection has acted to reduce nectar traits in the selfingI. lacunosa. Genetic correlations predicted from QTL properties are consistent with observed genetic correlations.

    Changes in floral traits associated with the selfing syndrome reflect independent evolution of at least two evolutionary modules: nectar and floral size traits. We also demonstrate directional selection on nectar traits, which is likely to be independent of selection on floral size traits. Our study also supports the expected mechanistic link between QTL properties and genetic correlations.

     
    more » « less
  2. Abstract

    The frequent transition from outcrossing to selfing in flowering plants is often accompanied by changes in multiple aspects of floral morphology, termed the “selfing syndrome.” While the repeated evolution of these changes suggests a role for natural selection, genetic drift may also be responsible. To determine whether selection or drift shaped different aspects of the pollination syndrome and mating system in the highly selfing morning gloryIpomoea lacunosa, we performed multivariate and univariate Qst‐Fst comparisons using a wide sample of populations ofI. lacunosaand its mixed‐mating sister speciesIpomoea cordatotriloba. The two species differ in early growth, floral display, inflorescence traits, corolla size, nectar, and pollen number. Our analyses support a role for natural selection driving trait divergence, specifically in corolla size and nectar traits, but not in early growth, display size, inflorescence length, or pollen traits. We also find evidence of selection for reduced herkogamy inI. lacunosa, consistent with selection driving both the transition in mating system and the correlated floral changes. Our research demonstrates that while some aspects of the selfing syndrome evolved in response to selection, others likely evolved due to drift or correlated selection, and the balance between these forces may vary across selfing species.

     
    more » « less