Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents new techniques for private billing in systems for privacy-preserving online advertising. In particular, we show how an ad exchange can use an e-cash scheme to bill advertisers for ad impressions without learning which client saw which ad: The exchange issues electronic coins to advertisers, advertisers pay publishers (via clients) for ad impressions, and publishers unlinkably redeem coins with the exchange. To implement this proposal, we design a new divisible e-cash scheme that uses modern zero-knowledge proofs to reduce the ad exchange's computational costs by roughly 250x compared to the previous state-of-the-art. With our new e-cash scheme, our private-billing infrastructure adds little overhead to existing private ad-retargeting systems: less than 63 ms of latency, negligible client computation, less than 3.2 KB of client communication, and a combined server operating cost (advertisers, publishers, and exchange) of less than 1% of ad spend, an over 5x savings compared to the previous state-of-the-art.more » « lessFree, publicly-accessible full text available October 1, 2025
-
null (Ed.)For system logs to aid in security investigations, they must be beyond the reach of the adversary. Unfortunately, attackers that have escalated privilege on a host are typically able to delete and modify log events at will. In response to this threat, a variety of secure logging systems have appeared over the years that attempt to provide tamper-resistance (e.g., write once read many drives, remote storage servers) or tamper-evidence (e.g., cryptographic proofs) for system logs. These solutions expose an interface through which events are committed to a secure log, at which point they enjoy protection from future tampering. However, all proposals to date have relied on the assumption that an event's occurrence is concomitant with its commitment to the secured log. In this work, we challenge this assumption by presenting and validating a race condition attack on the integrity of audit frameworks. Our attack exploits the intrinsically asynchronous nature of I/O and IPC activity, demonstrating that an attacker can snatch events about their intrusion out of message buffers after they have occurred but before they are committed to the log, thus bypassing existing protections. We present a first step towards defending against our attack by introducing KennyLoggings, the first kernel- based tamper-evident logging system that satisfies the synchronous integrity property, meaning that it guarantees tamper-evidence of events upon their occurrence. We implement KennyLoggings on top of the Linux kernel and show that it imposes between 8% and 11% overhead on log-intensive application workloads.more » « less
-
null (Ed.)Computer-aided cryptography is an active area of research that develops and applies formal, machine-checkable approaches to the design, analysis, and implementation of cryptography. We present a cross-cutting systematization of the computer-aided cryptography literature, focusing on three main areas: (i) design-level security (both symbolic security and computational security), (ii) functional correctness and efficiency, and (iii) implementation-level security (with a focus on digital side-channel resistance). In each area, we first clarify the role of computer-aided cryptography---how it can help and what the caveats are---in addressing current challenges. We next present a taxonomy of state-of-the-art tools, comparing their accuracy, scope, trustworthiness, and usability. Then, we highlight their main achievements, trade-offs, and research challenges. After covering the three main areas, we present two case studies. First, we study efforts in combining tools focused on different areas to consolidate the guarantees they can provide. Second, we distill the lessons learned from the computer-aided cryptography community's involvement in the TLS 1.3 standardization effort. Finally, we conclude with recommendations to paper authors, tool developers, and standardization bodies moving forward.more » « less
-
The universal composability (UC) framework is the established standard for analyzing cryptographic protocols in a modular way, such that security is preserved under concurrent composition with arbitrary other protocols. However, although UC is widely used for on-paper proofs, prior attempts at systemizing it have fallen short, either by using a symbolic model (thereby ruling out computational reduction proofs), or by limiting its expressiveness. In this paper, we lay the groundwork for building a concrete, executable implementation of the UC framework. Our main contribution is a process calculus, dubbed the Interactive Lambda Calculus (ILC). ILC faithfully captures the computational model underlying UC—interactive Turing machines (ITMs)—by adapting ITMs to a subset of the π-calculus through an affine typing discipline. In other words, well-typed ILC programs are expressible as ITMs. In turn, ILC’s strong confluence property enables reasoning about cryptographic security reductions. We use ILC to develop a simplified implementation of UC called SaUCy.more » « less