skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liburdy, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract An experimental study was undertaken to evaluate the power extraction of an airfoil undergoing large amplitude pitching and heaving using a trailing edge flapping motion for the application of energy harvesting for steady flow over the airfoil. The airfoil was a NACA0015 design, pitching at the 1/3 chord position, with an actively controlled trailing edge flap hinged at the 2/3 chord location (chord length of c = 150mm and aspect ratio AR = 2, however end plates were used to simulate a two-dimensional airfoil). Data were obtained over a range of wind speeds corresponding to Reynolds numbers in the 30,000–60,000 range in a low-speed wind tunnel with turbulence intensities below 2%. The results are characterized using the reduced frequency, k = fc/U∞ over the range of 0.04–0.08, where f is the oscillating frequency in Hz, and U∞ is the freestream velocity. The pitching and heaving amplitudes are θ0 = 70° and h0 = 0.6c respectively, with a phase delay of 90°. Two trailing edge motion profiles are presented, examining the relative phase of trailing edge flap to the pitching phase. For each motion, a positive and negative case are considered. This is a total of 4 trailing edge motion profiles. Trailing edge motion amplitudes of 20° and 40° are compared and results contrasted. Direct transient force measurements were used to obtain the cycle variation of induced aerodynamic loads (lift coefficient) as well as the power output and efficiency. Results are used to identify the influence of trailing edge flap oscillations on the overall performance for energy harvesting, with a maximum efficiency increase of 21.3% and corresponding cycle averaged heaving power coefficient increase of 29.9% observed as a result of trailing edge motion. 
    more » « less