Over the course of the physical activity transition, machines have largely replaced skeletal muscle as the source of work for locomotion and other forms of occupational physical activity in industrial environments. To better characterize this transition and its effect on back muscles and the spine, we tested to what extent typical occupational activities of rural subsistence farmers demand higher magnitudes and increased variability of back muscle activity and spinal loading compared to occupational activities of urban office workers in Rwanda, and whether these differences were associated with back muscle endurance, the dominant risk factor for back pain. Using electromyography, inertial measurement units, and OpenSim musculoskeletal modeling, we measured back muscle activity and spinal loading continuously while participants performed occupational activities for one hour. We measured back muscle endurance using electromyography median frequency analysis. During occupational work, subsistence farmers activate their back muscles and load their spines at 390% higher magnitudes and with 193% greater variability than office workers. Partial correlations accounting for body mass show magnitude and variability response variables are positively associated with back muscle endurance (
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Gu, Yaodong (Ed.)
R = 0.39–0.90 [P < 0.001–0.210] andR = 0.54–0.72 [P = 0.007–0.071], respectively). Body mass is negatively correlated with back muscle endurance (R = -0.60,P = 0.031), suggesting higher back muscle endurance may be also partly attributable to having lower body mass. Because higher back muscle endurance is a major factor that prevents back pain, these results reinforce evidence that under-activating back muscles and under-loading spines at work increases vulnerability to back pain and may be an evolutionary mismatch. As sedentary occupations become more common, there is a need to study the extent to which occupational and leisure time physical activities that increase back muscle endurance helps prevent back pain.Free, publicly-accessible full text available November 4, 2025 -
Abstract Running injuries are prevalent, but their exact mechanisms remain unknown largely due to limited real-world biomechanical analysis. Reducing overstriding, the horizontal distance that the foot lands ahead of the body, may be relevant to reducing injury risk. Here, we leverage the geometric relationship between overstriding and lower extremity sagittal segment angles to demonstrate that wearable inertial measurement units (IMUs) can predict overstriding during treadmill and overground running in the laboratory. Ten recreational runners matched their strides to a metronome to systematically vary overstriding during constant-speed treadmill running and showed similar overstriding variation during comfortable-speed overground running. Linear mixed models were used to analyze repeated measures of overstriding and sagittal segment angles measured with motion capture and IMUs. Sagittal segment angles measured with IMUs explained 95% and 98% of the variance in overstriding during treadmill and overground running, respectively. We also found that sagittal segment angles measured with IMUs correlated with peak braking force and explained 88% and 80% of the variance during treadmill and overground running, respectively. This study highlights the potential for IMUs to provide insights into landing and loading patterns over time in real-world running environments, and motivates future research on feedback to modify form and prevent injury.
-
Noncommunicable diseases (NCDs) are on the rise worldwide. Obesity, cardiovascular disease, and type 2 diabetes are among a long list of “lifestyle” diseases that were rare throughout human history but are now common. The evolutionary mismatch hypothesis posits that humans evolved in environments that radically differ from those we currently experience; consequently, traits that were once advantageous may now be “mismatched” and disease causing. At the genetic level, this hypothesis predicts that loci with a history of selection will exhibit “genotype by environment” (GxE) interactions, with different health effects in “ancestral” versus “modern” environments. To identify such loci, we advocate for combining genomic tools in partnership with subsistence-level groups experiencing rapid lifestyle change. In these populations, comparisons of individuals falling on opposite extremes of the “matched” to “mismatched” spectrum are uniquely possible. More broadly, the work we propose will inform our understanding of environmental and genetic risk factors for NCDs across diverse ancestries and cultures.
-
Abstract Objectives The main objective was to test the hypothesis of a neuromechanical link in humans between the head and forearm during running mediated by the biceps brachii and superior trapezius muscles. We hypothesized that this linkage helps stabilize the head and combats rapid forward pitching during running which may interfere with gaze stability.
Materials and methods Thirteen human participants walked and ran on a treadmill while motion capture recorded body segment kinematics and electromyographic sensors recorded muscle activation. To test perturbations to the linkage system we compared participants running normally as well as with added mass to the face and the hand.
Results The results confirm the presence of a neuromechanical linkage between the head and forearm mediated by the biceps and superior trapezius during running but not during walking. In running, the biceps and superior trapezius activations were temporally linked during the stride cycle, and adding mass to either the head or hand increased activation in both muscles, consistent with our hypothesis. During walking the forces acting on the body segments and muscle activation levels were much smaller than during running, indicating no need for a linkage to keep the head and gaze stable.
Discussion The results suggest that the evolution of long distance running in early
Homo may have favored selection for reduced rotational inertia of both the head and forearm through synergistic muscle activation, contributing to the transition from australopith head and forelimb morphology to the more human‐like form ofHomo erectus . Selective pressures from the evolution of bipedal walking were likely much smaller, but may explain in part the intermediate form of the australopith scapula between that of extant apes and humans.