Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Spotted lanternfly (SLF), Lycorma delicatula (White) (Hemiptera: Fulgoridae), is a non-native planthopper that recently established in the Northeastern United States. Little is known about the spatial dynamics of its invasion and key drivers associated with its regional spread. Here, using field survey data from a total of 241,366 survey locations from 2014–2019 in the eastern USA, we quantified rates of SLF spread and modeled factors associated with the risk of SLF invasion. During the study period, SLF invasion appears to be associated with both short- and long-distance dispersal. On average, the number of newly invaded counties per year increased since initial discovery, with 0–14 long-distance dispersal events per year and median jump distances ranging from 55 to 92 km/year throughout the study period. Radial rates of spread, based on two of the three analysis methods applied, varied from 38.6 to 46.2 km/year. A Cox proportional hazards model suggested that risk of SLF invasion increased with a proxy for human-aided dispersal, human population per county. We anticipate that SLF will continue to spread via both long- and short-distance dispersals, especially via human activities. Efforts to manage SLF populations potentially could target human-mediated movement of SLF to reduce rates of spread.more » « less
-
Garnas, Jeff R. (Ed.)Abstract Some introduced species cause severe damage, although the majority have little impact. Robust predictions of which species are most likely to cause substantial impacts could focus efforts to mitigate those impacts or prevent certain invasions entirely. Introduced herbivorous insects can reduce crop yield, fundamentally alter natural and managed forest ecosystems, and are unique among invasive species in that they require certain host plants to succeed. Recent studies have demonstrated that understanding the evolutionary history of introduced herbivores and their host plants can provide robust predictions of impact. Specifically, divergence times between hosts in the native and introduced ranges of a nonnative insect can be used to predict the potential impact of the insect should it establish in a novel ecosystem. However, divergence time estimates vary among published phylogenetic datasets, making it crucial to understand if and how the choice of phylogeny affects prediction of impact. Here, we tested the robustness of impact prediction to variation in host phylogeny by using insects that feed on conifers and predicting the likelihood of high impact using four different published phylogenies. Our analyses ranked 62 insects that are not established in North America and 47 North American conifer species according to overall risk and vulnerability, respectively. We found that results were robust to the choice of phylogeny. Although published vascular plant phylogenies continue to be refined, our analysis indicates that those differences are not substantial enough to alter the predictions of invader impact. Our results can assist in focusing biosecurity programs for conifer pests and can be more generally applied to nonnative insects and their potential hosts by prioritizing surveillance for those insects most likely to be damaging invaders.more » « less
-
Most biological invasion literature—including syntheses and meta-analyses and the resulting theory—is reported from temperate regions, drawing only minimally from the tropics except for some island systems. The lack of attention to invasions in the tropics results from and reinforces the assumption that tropical ecosystems, and especially the continental tropics, are more resistant to invasions. We have critically assessed biological invasions in the tropics and compared them with temperate regions, finding relatively weak evidence that tropical and temperate regions differ in their invasibility and in the traits that determine invader success and impacts. Propagule pressure and the traits that promote adaptation to disturbances (e.g., high fecundity or fast growth rates) are generally favorable to invasions in both tropical and temperate regions. We emphasize the urgent need for greater investment and regional cooperation in the study, prevention, and management of biological invasions in the tropics.more » « less
-
Worldwide, forests are increasingly affected by nonnative insects and diseases, some of which cause substantial tree mortality. Forests in the United States have been invaded by a particularly large number (>450) of tree-feeding pest species. While information exists about the ecological impacts of certain pests, region-wide assessments of the composite ecosystem impacts of all species are limited. Here we analyze 92,978 forest plots distributed across the conterminous United States to estimate biomass loss associated with elevated mortality rates caused by the 15 most damaging nonnative forest pests. We find that these species combined caused an additional (i.e., above background levels) tree mortality rate of 5.53 TgC per year. Compensation, in the form of increased growth and recruitment of nonhost species, was not detectable when measured across entire invaded ranges but does occur several decades following pest invasions. In addition, 41.1% of the total live forest biomass in the conterminous United States is at risk of future loss from these 15 pests. These results indicate that forest pest invasions, driven primarily by globalization, represent a huge risk to US forests and have significant impacts on carbon dynamics.more » « less
An official website of the United States government
