Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Tracking technologies have widely expanded our understanding of bird migration routes, destinations and underlying strategies. However, determining the entire trajectory of small birds equipped with lightweight geolocators remains a challenge.We develop a highly optimized hidden Markov model (HMM) for reconstructing bird trajectories. The observation model is defined by pressure and, optionally, light measurements, while the movement model incorporates wind data to constrain consecutive positions based on realistic airspeeds. To reduce the computational costs associated with a large state space, we prune the HMM states and transitions based on flight and observation constraints to efficiently model the entire trajectory.The approach presented is based on a mathematically exact procedure and is fast to compute. We demonstrate how to compute (1) the most likely trajectory, (2) the marginal probability map of each stationary period, (3) simulated trajectories and (4) the wind conditions (wind support/drift) encountered by the bird during each migratory flight.We construct a version of an HMM optimized for reconstructing a bird's migration trajectory based on lightweight geolocator data. To render this approach easily accessible to researchers, we designed a dedicated R packageGeoPressureR(https://raphaelnussbaumer.com/GeoPressureR/).more » « less
-
Abstract Weather radar networks have great potential for continuous and long-term monitoring of aerial biodiversity of birds, bats, and insects. Biological data from weather radars can support ecological research, inform conservation policy development and implementation, and increase the public’s interest in natural phenomena such as migration. Weather radars are already used to study animal migration, quantify changes in populations, and reduce aerial conflicts between birds and aircraft. Yet efforts to establish a framework for the broad utilization of operational weather radar for biodiversity monitoring are at risk without suitable data policies and infrastructure in place. In Europe, communities of meteorologists and ecologists have made joint efforts toward sharing and standardizing continent-wide weather radar data. These efforts are now at risk as new meteorological data exchange policies render data useless for biodiversity monitoring. In several other parts of the world, weather radar data are not even available for ecological research. We urge policy makers, funding agencies, and meteorological organizations across the world to recognize the full potential of weather radar data. We propose several actions that would ensure the continued capability of weather radar networks worldwide to act as powerful tools for biodiversity monitoring and research.more » « less
-
Abstract Climate change is drastically changing the timing of biological events across the globe. Changes in the phenology of seasonal migrations between the breeding and wintering grounds have been observed across biological taxa, including birds, mammals, and insects. For birds, strong links have been shown between changes in migration phenology and changes in weather conditions at the wintering, stopover, and breeding areas. For other animal taxa, the current understanding of, and evidence for, climate (change) influences on migration still remains rather limited, mainly due to the lack of long‐term phenology datasets. Bracken Cave in Texas (USA) holds one of the largest bat colonies of the world. Using weather radar data, a unique 23‐year (1995–2017) long time series was recently produced of the spring and autumn migration phenology of Brazilian free‐tailed bats (Tadarida brasiliensis) at Bracken Cave. Here, we analyse these migration phenology time series in combination with gridded temperature, precipitation, and wind data across Mexico and southern USA, to identify the climatic drivers of (changes in) bat migration phenology. Perhaps surprisingly, our extensive spatiotemporal search did not find temperature to influence either spring or autumn migration. Instead, spring migration phenology seems to be predominantly driven by wind conditions at likely wintering or spring stopover areas during the migration period. Autumn migration phenology, on the other hand, seems to be dominated by precipitation to the east and north‐east of Bracken Cave. Long‐term changes towards more frequent migration and favourable wind conditions have, furthermore, allowed spring migration to occur 16 days earlier. Our results illustrate how some of the remaining knowledge gaps on the influence of climate (change) on bat migration and abundance can be addressed using weather radar analyses.more » « less
An official website of the United States government
