Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 28, 2023
-
Social media has become a powerful and efficient platform for information diffusion. The increasing pervasiveness of social media use, however, has brought about the problems of fraudulent accounts that are intended to diffuse misinformation or malicious contents. Twitter recently released comprehensive archives of fraudulent tweets that are possibly connected to a propaganda effort of Internet Research Agency (IRA) on the 2016 U.S. presidential election. To understand information diffusion in fraudulent networks, we analyze structural properties of the IRA retweet network, and develop deep neural network models to detect fraudulent tweets. The structure analysis reveals key characteristics of the fraudulent network. The experiment results demonstrate the superior performance of the deep learning technique to a traditional classification method in detecting fraudulent tweets. The findings have potential implications for curbing online misinformation.
-
Despite the tremendous role of online consumer reviews (OCRs) in facilitating consumer purchase decision making, the potential inconsistency between product ratings and review content could cause the uncertainty and confusions of prospect consumers toward a product. This research is aimed to investigate such inconsistency so as to better assist potential consumers with making purchase decisions. First, this study extracted a reviewer’s sentiments from review text via sentiment analysis. Then, it examined the correlation and inconsistency between product ratings and review sentiments via Pearson correlation coefficients (PCC) and box plots. Next, we compared such inconsistency patterns between fake and authentic reviews. Based on an analysis of 24,539 Yelp reviews, we find that although the ratings and sentiments are highly correlated, the inconsistency between the two is more salient in fake reviews than in authentic reviews. The comparison also reveals different inconsistency patterns between the two types of reviews.
-
Introduction:Current brain-computer interfaces (BCIs) primarily rely on visual feedback. However, visual feedback may not be sufficient for applications such as movement restoration, where somatosensory feedback plays a crucial role. For electrocorticography (ECoG)-based BCIs, somatosensory feedback can be elicited by cortical surface electro-stimulation [1]. However, simultaneous cortical stimulation and recording is challenging due to stimulation artifacts. Depending on the orientation of stimulating electrodes, their distance to the recording site, and the stimulation intensity, these artifacts may overwhelm the neural signals of interest and saturate the recording bioamplifiers, making it impossible to recover the underlying information [2]. To understand how these factors affect artifact propagation, we performed a preliminary characterization of ECoG signals during cortical stimulation.Materials/Methods/ResultsECoG electrodes were implanted in a 39-year old epilepsy patient as shown in Fig. 1. Pairs of adjacent electrodes were stimulated as a part of language cortical mapping. For each stimulating pair, a charge-balanced biphasic square pulse train of current at 50 Hz was delivered for five seconds at 2, 4, 6, 8 and 10 mA. ECoG signals were recorded at 512 Hz. The signals were then high-pass filtered (≥1.5 Hz, zero phase), and the 5-second stimulation epochs were segmented. Within each epoch, artifact-induced peaks were detectedmore »