skip to main content

Search for: All records

Creators/Authors contains: "Lim, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ranzato, M. ; Beygelzimer, A. ; Dauphin, Y. ; Liang, P. S. ; Wortman Vaughan, J. (Ed.)
    Bootstrapping has been a primary tool for ensemble and uncertainty quantification in machine learning and statistics. However, due to its nature of multiple training and resampling, bootstrapping deep neural networks is computationally burdensome; hence it has difficulties in practical application to the uncertainty estimation and related tasks. To overcome this computational bottleneck, we propose a novel approach called Neural Bootstrapper (NeuBoots), which learns to generate bootstrapped neural networks through single model training. NeuBoots injects the bootstrap weights into the high-level feature layers of the backbone network and outputs the bootstrapped predictions of the target, without additional parameters and the repetitive computations from scratch. We apply NeuBoots to various machine learning tasks related to uncertainty quantification, including prediction calibrations in image classification and semantic segmentation, active learning, and detection of out-of-distribution samples. Our empirical results show that NeuBoots outperforms other bagging based methods under a much lower computational cost without losing the validity of bootstrapping.
  2. Free, publicly-accessible full text available June 1, 2023
  3. Free, publicly-accessible full text available June 1, 2023
  4. Free, publicly-accessible full text available July 7, 2023
  5. Free, publicly-accessible full text available June 1, 2023