Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)We present PALLAS, a practical method for gene regulatory network (GRN) inference from time series data, which employs penalized maximum likelihood and particle swarms for optimization. PALLAS is based on the Partially-Observable Boolean Dynamical System (POBDS) model and thus does not require ad-hoc binarization of the data. The penalty in the likelihood is a LASSO regularization term, which encourages the resulting network to be sparse. PALLAS is able to scale to networks of realistic size under no prior knowledge, by virtue of a novel continuous-discrete Fish School Search particle swarm algorithm for efficient simultaneous maximization of the penalized likelihood over the discrete space of networks and the continuous space of observational parameters. The performance of PALLAS is demonstrated by a comprehensive set of experiments using synthetic data generated from real and artificial networks, as well as real time series microarray and RNA-seq data, where it is compared to several other well-known methods for gene regulatory network inference. The results show that PALLAS can infer GRNs more accurately than other methods, while being capable of working directly on gene expression data, without need of ad-hoc binarization. PALLAS is a fully-fledged program, written in python, and available on GitHub (https://github.com/yukuntan92/PALLAS).more » « less
-
null (Ed.)We propose a new algorithm for inference of protein-protein interaction (PPI) networks from noisy time series of Liquid- Chromatography Mass-Spectrometry (LC-MS) proteomic expression data based on Approximate Bayesian Computation - Sequential Monte Carlo sampling (ABC-SMC). The algorithm is an extension of our previous framework PALLAS. The proposed algorithm can be easily modified to handle other complex models of expression data, such as LC-MS data, for which the likelihood function is intractable. Results based on synthetic time series of cytokine LC-MS measurements cor- responding to a prototype immunomic network demonstrate that our algorithm is capable of inferring the network topology accurately.more » « less
-
We propose a new algorithm for inference of gene regulatory networks (GRN) from noisy gene expression data based on maximum-likelihood (ML) adaptive filtering and the discrete fish school search algorithm (DFSS). The approach is based on the general partially-observed Boolean dynamical system (POBDS) model, and as such can be used for simultaneous state and parameter estimation for any Boolean dynamical system observed in noise. The proposed DFSS-ML-BKF algorithm combines the ML adaptive Boolean Kalman Filter (ML-BKF) with DFSS, a version of the Fish School Search algorithm tailored for discrete parameter spaces. Results based on synthetic gene expression time-series data using the well-known p53-MDM2 negative-feedback loop GRN demonstrate that DFSS-ML-BKF can infer the network topology accurately and efficiently.more » « less