skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Lima, Thiago G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Katz, Laura A (Ed.)
    Abstract Sterility among hybrids is one of the most prevalent forms of reproductive isolation delineating species boundaries and is expressed disproportionately in heterogametic XY males. While hybrid male sterility (HMS) due to the “large X effect” is a well-recognized mechanism of reproductive isolation, it is less clear how HMS manifests in species that lack heteromorphic sex chromosomes. We evaluated differences in allele frequencies at approximately 460,000 SNPs between fertile and sterile F2 interpopulation male hybrids to characterize the genomic architecture of HMS in a species without sex chromosomes (Tigriopus californicus). We tested associations between HMS and mitochondrial-nuclear and/or nuclear-nuclear signatures of incompatibility. Genomic regions associated with HMS were concentrated on a single chromosome with the same primary 2-Mbp regions identified in one pair of reciprocal crosses. Gene Ontology analysis revealed that annotations associated with spermatogenesis were the most overrepresented within the implicated region, with nine protein-coding genes connected with this process found in the quantitative trait locus of chromosome 2. Our results indicate that a narrow genomic region was associated with the sterility of male hybrids in T. californicus and suggest that incompatibilities among select nuclear loci may replace the large X effect when sex chromosomes are absent. 
    more » « less
  2. Abstract

    The Africanized honey bee (AHB) is a New World amalgamation of several subspecies of the western honey bee (Apis mellifera), a diverse taxon historically grouped into four major biogeographic lineages: A (African), M (Western European), C (Eastern European), and O (Middle Eastern). In 1956, accidental release of experimentally bred “Africanized” hybrids from a research apiary in Sao Paulo, Brazil initiated a hybrid species expansion that now extends from northern Argentina to northern California (U.S.A.). Here, we assess nuclear admixture and mitochondrial ancestry in 60 bees from four countries (Panamá; Costa Rica, Mexico; U.S.A) across this expansive range to assess ancestry of AHB several decades following initial introduction and test the prediction that African ancestry decreases with increasing latitude. We find that AHB nuclear genomes from Central America and Mexico have predominately African genomes (76%–89%) with smaller contributions from Western and Eastern European lineages. Similarly, nearly all honey bees from Central America and Mexico possess mitochondrial ancestry from the African lineage with few individuals having European mitochondria. In contrast, AHB from San Diego (CA) shows markedly lower African ancestry (38%) with substantial genomic contributions from all four major honey bee lineages and mitochondrial ancestry from all four clades as well. Genetic diversity measures from all New World populations equal or exceed those of ancestral populations. Interestingly, the feral honey bee population of San Diego emerges as a reservoir of diverse admixture and high genetic diversity, making it a potentially rich source of genetic material for honey bee breeding.

     
    more » « less
  3. Abstract

    Reproductive isolation is often achieved when genes that are neutral or beneficial in their genomic background become functionally incompatible in a foreign genomic background, causing inviability, sterility or other forms of low fitness in hybrids. Recent studies suggest that mitonuclear interactions are among the initial incompatibilities to evolve at early stages of population divergence across taxa. Yet, the genomic architecture of mitonuclear incompatibilities has rarely been elucidated. We employ an experimental evolution approach starting with low‐fitness F2interpopulation hybrids of the copepodTigriopus californicus, in which frequencies of compatible and incompatible nuclear alleles change in response to an alternative mitochondrial background. After about nine generations, we observe a generalized increase in population size and in survivorship, suggesting efficiency of selection against maladaptive phenotypes. Whole genome sequencing of evolved populations showed some consistent allele frequency changes across three replicates of each reciprocal cross, but markedly different patterns between mitochondrial backgrounds. In only a few regions (~6.5% of the genome), the same parental allele was overrepresented irrespective of the mitochondrial background. About 33% of the genome showed allele frequency changes consistent with divergent selection, with the location of these genomic regions strongly differing between mitochondrial backgrounds. In 87% and 89% of these genomic regions, the dominant nuclear allele matched the associated mitochondrial background, consistent with mitonuclear co‐adaptation. These results suggest that mitonuclear incompatibilities have a complex polygenic architecture that differs between populations, potentially generating genome‐wide barriers to gene flow between closely related taxa.

     
    more » « less