Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The light chain of tetanus neurotoxin (TeNT) is a 52 kD metalloprotease that potently inhibits synaptic transmission by cleaving the endogenous vesicle fusion protein VAMP2. To mitigate the toxicity of TeNT and harness it as a conditional tool for neuroscience, we engineered Light-Activated TeNT (LATeNT) via insertion of the light-sensitive LOV domain into an allosteric site. LATeNT was optimized by directed evolution and shown to have undetectable activity in the dark mammalian brain. Following 30 seconds of weak blue light exposure, however, LATeNT potently inhibited synaptic transmission in multiple brain regions. The effect could be reversed over 24 hours. We used LATeNT to discover an interneuron population in hippocampus that controls anxiety-like behaviors in mouse, and to control the secretion of endogenous insulin from pancreatic beta cells. Synthetic circuits incorporating LATeNT converted drug, Ca2+, or receptor activation into transgene expression or reporter protein secretion. Due to its large dynamic range, rapid kinetics, and highly specific mechanism of action, LATeNT should be a robust tool for conditional proteolysis and spatiotemporal control of synaptic transmissionin vivo.more » « lessFree, publicly-accessible full text available January 28, 2026
-
Abstract Cell development and behavior are driven by internal genetic programming, but the external microenvironment is increasingly recognized as a significant factor in cell differentiation, migration, and in the case of cancer, metastatic progression. Yet it remains unclear how the microenvironment influences cell processes, especially when examining cell motility. One factor that affects cell motility is cell mechanics, which is known to be related to substrate stiffness. Examining how cells interact with each other in response to mechanically differential substrates would allow an increased understanding of their coordinated cell motility. In order to probe the effect of substrate stiffness on tumor related cells in greater detail, we created hard–soft–hard (HSH) polydimethylsiloxane (PDMS) substrates with alternating regions of different stiffness (200 and 800 kPa). We then cultured WI-38 fibroblasts and A549 epithelial cells to probe their motile response to the substrates. We found that when the 2 cell types were exposed simultaneously to the same substrate, fibroblasts moved at an increased speed over epithelial cells. Furthermore, the HSH substrate allowed us to physically guide and separate the different cell types based on their relative motile speed. We believe that this method and results will be important in a diversity of areas including mechanical microenvironment, cell motility, and cancer biology.more » « less
An official website of the United States government
