skip to main content


Search for: All records

Creators/Authors contains: "Lin, Joseph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. S-Nitrosothiol (RS-NO) formation in proteins and peptides have been implicated as factors in the etiology of many diseases and as possible regulators of thiol protein function. They have also been proposed as possible storage forms of nitric oxide (NO). However, despite their proposed functions/roles, there appears to be little consensus regarding the physiological mechanisms of RS-NO formation and degradation. Hydropersulfides (RSSH) have recently been discovered as endogenously generated species with unique reactivity. One important reaction of RSSH is with RS-NO, which leads to the degradation of RS-NO as well as the release of NO. Thus, it can be speculated that RSSH can be a factor in the regulation of steady-state RS-NO levels, and therefore may be important in RS-NO (patho)physiology. Moreover, RSSH-mediated NO release from RS-NO may be a possible mechanism allowing RS-NO to serve as a storage form of NO. 
    more » « less
  2. null (Ed.)
    We propose an efficient heuristic for mapping the logical qubits of quantum algorithms to the physical qubits of connectivity-limited devices, adding a minimal number of connectivity-compliant SWAP gates. In particular, given a quantum circuit, we construct an undirected graph with edge weights a function of the two-qubit gates of the quantum circuit. Taking inspiration from spectral graph drawing, we use an eigenvector of the graph Laplacian to place logical qubits at coordinate locations. These placements are then mapped to physical qubits for a given connectivity. We primarily focus on one-dimensional connectivities and sketch how the general principles of our heuristic can be extended for use in more general connectivities. 
    more » « less