skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lin, Po.An"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Salivary glucose oxidase (GOX) is one of the most abundant salivary proteins in generalist caterpillar Helicoverpa zea. GOX has been hypothesized to benefit H. zea by modulating direct defense responses of plants. Although the function of this protein has been studied, its role remains unclear. The study aims to test the hypothesis that GOX induces similar defensive responses among Solanaceous plants, and has similar consequences for larval performance of H. zea. Using six different plants in Solanaceae, including tomato (Solanum lycopersicum cv. Better Boy and S. lycopersicum var. cerasiforme), bell pepper (Capsicum annuum cv. Revolution), habanero pepper (Capsicum chinense), tomatillo (Physalis philadelphica cv. Tamayo), and tobacco (N. benthamiana), we tested the impact of GOX on induction of two common defense proteins, trypsin protease inhibitors (TPI) and polyphenol oxidases (PPO), and on relative growth rate of H. zea larvae. We found that GOX specifically induced TPI activity in tomato and habanero pepper, and the level of defense protein depended on leaf location. In addition, prior application of GOX did not increase the performance of H. zea in any plant tested. Changes in performance in tomato and habanero pepper matched the induction of TPI. In summary, our findings indicate that GOX induces similar defense responses in some Solanacean plants, but largely depends on species/genotype of plant, and that the presence of GOX did not benefit larval H. zea by modulating direct defense responses of plants. Other mechanisms must be involved in driving the evolution of this salivary protein. 
    more » « less