skip to main content


Search for: All records

Creators/Authors contains: "Lin, Q."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Safety-guaranteed motion planning is critical for self-driving cars to generate collision-free trajectories. A layered motion planning approach with decoupled path and speed planning is widely used for this purpose. This approach is prone to be suboptimal in the presence of dynamic obstacles. Spatial-temporal approaches deal with path planning and speed planning simultaneously; however, the existing methods only support simple-shaped corridors like cuboids, which restrict the search space for optimization in complex scenarios. We propose to use trapezoidal prism-shaped corridors for optimization, which significantly enlarges the solution space compared to the existing cuboidal corridors-based method. Finally, a piecewise Bezier curve optimization is conducted in our proposed ´ corridors. This formulation theoretically guarantees the safety of the continuous-time trajectory. We validate the efficiency and effectiveness of the proposed approach in numerical and CommonRoad simulations 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. Abstract The field of dark matter detection is a highly visible and highly competitive one. In this paper, we propose recommendations for presenting dark matter direct detection results particularly suited for weak-scale dark matter searches, although we believe the spirit of the recommendations can apply more broadly to searches for other dark matter candidates, such as very light dark matter or axions. To translate experimental data into a final published result, direct detection collaborations must make a series of choices in their analysis, ranging from how to model astrophysical parameters to how to make statistical inferences based on observed data. While many collaborations follow a standard set of recommendations in some areas, for example the expected flux of dark matter particles (to a large degree based on a paper from Lewin and Smith in 1995), in other areas, particularly in statistical inference, they have taken different approaches, often from result to result by the same collaboration. We set out a number of recommendations on how to apply the now commonly used Profile Likelihood Ratio method to direct detection data. In addition, updated recommendations for the Standard Halo Model astrophysical parameters and relevant neutrino fluxes are provided. The authors of this note include members of the DAMIC, DarkSide, DARWIN, DEAP, LZ, NEWS-G, PandaX, PICO, SBC, SENSEI, SuperCDMS, and XENON collaborations, and these collaborations provided input to the recommendations laid out here. Wide-spread adoption of these recommendations will make it easier to compare and combine future dark matter results. 
    more » « less
  3. A bio-orthogonal chemistry-based approach for fluorescent labelling of ribosomal RNA is described. It involves an adenosine analogue modified with trans -cyclooctene and masked 5′-phosphate group using aryl phosphoramidate. The incorporation into rRNA has been confirmed using agarose gel electrophoresis, as well as a highly sensitive UHPLC-MS/MS method. Fluorescent labelling of rRNA has been achieved in live HeLa cells via an inverse electron demand Diels–Alder reaction with a tetrazine conjugated to an Oregon Green fluorophore. This communication describes the stepwise approach that led to the development and characterization of the probe. The results demonstrate a new strategy towards development of future fluorescent probes to investigate the biochemistry of nucleic acids. 
    more » « less
  4. Abstract The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/ c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1 $$\pm 0.6$$ ± 0.6 % and 84.1 $$\pm 0.6$$ ± 0.6 %, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  5. null (Ed.)