skip to main content

Search for: All records

Creators/Authors contains: "Lin, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Graph Neural Networks (GNNs) are based on repeated aggregations of information from nodes’ neighbors in a graph. However, because nodes share many neighbors, a naive implementation leads to repeated and inefficient aggregations and represents significant computational overhead. Here we propose Hierarchically Aggregated computation Graphs (HAGs), a new GNN representation technique that explicitly avoids redundancy by managing intermediate aggregation results hierarchically and eliminates repeated computations and unnecessary data transfers in GNN training and inference. HAGs perform the same computations and give the same models/accuracy as traditional GNNs, but in a much shorter time due to optimized computations. To identify redundant computations,more »we introduce an accurate cost function and use a novel search algorithm to find optimized HAGs. Experiments show that the HAG representation significantly outperforms the standard GNN by increasing the end-to-end training throughput by up to 2.8× and reducing the aggregations and data transfers in GNN training by up to 6.3× and 5.6×, with only 0.1% memory overhead. Overall, our results represent an important advancement in speeding-up and scaling-up GNNs without any loss in model predictive performance.« less
  2. Free, publicly-accessible full text available August 1, 2023
  3. An integrated urban transportation system usually consists of multiple transport modes that have complementary characteristics of capacities, speeds, and costs, facilitating smooth passenger transfers according to planned schedules. However, such an integration is not designed to operate under disruptive events, e.g., a signal failure at a subway station or a breakdown of a bus, which have rippling effects on passenger demand and significantly increase delays. To address these disruptive events, current solutions mainly rely on a substitute service to transport passengers from and to affected areas using adhoc schedules. To fully utilize heterogeneous transportation systems under disruptive events, we designmore »a service called eRoute based on a hierarchical receding horizon control framework to automatically reroute, reschedule, and reallocate multi-mode transportation systems based on real-time and predicted demand and supply. Focusing on an integration of subway and bus, we implement and evaluate eRoute with large datasets including (i) a bus system with 13,000 buses, (ii) a subway system with 127 subway stations, (iii) an automatic fare collection system with a total of 16,840 readers and 8 million card users from a metropolitan city. The data-driven evaluation results show that our solution improves the ratio of served passengers (RSP) by up to 11.5 times and reduces the average traveling time by up to 82.1% compared with existing solutions.« less
  4. Free, publicly-accessible full text available November 1, 2022