skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Lin, Sen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 5, 2025
  2. Free, publicly-accessible full text available May 1, 2025
  3. Abstract Synaptic devices with tunable weight hold great promise in enabling non-von Neumann architecture for energy efficient computing. However, conventional metal-insulator-metal based two-terminal memristors share the same physical channel for both programming and reading, therefore the programming power consumption is dependent on the synaptic resistance states and can be particularly high when the memristor is in the low resistance states. Three terminal synaptic transistors, on the other hand, allow synchronous programming and reading and have been shown to possess excellent reliability. Here we present a binary oxide based three-terminal MoS2synaptic device, in which the channel conductance can be modulated by interfacial charges generated at the oxide interface driven by Maxwell-Wagner instability. The binary oxide stack serves both as an interfacial charge host and gate dielectrics. Both excitatory and inhibitory behaviors are experimentally realized, and the presynaptic potential polarity can be effectively controlled by engineering the oxide stacking sequence, which is a unique feature compared with existing charge-trap based synaptic devices and provides a new tuning knob for controlling synaptic device characteristics. By adopting a three-terminal transistor structure, the programming channel and reading channel are physically separated and the programming power consumption can be kept constantly low (∼50 pW) across a wide dynamic range of 105. This work demonstrates a complementary metal oxide semiconductor compatible approach to build power efficient synaptic devices for artificial intelligence applications. 
    more » « less