skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Lin, Wenbin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Phosphine‐ligated transition metal complexes play a pivotal role in modern catalysis, but our understanding of the impact of ligand counts on the catalysis performance of the metal center is limited. Here we report the synthesis of a low‐coordinate mono(phosphine)‐Rh catalyst on a metal‐organic layer (MOL), P‐MOL • Rh, and its applications in the hydrogenation of mono‐, di‐, and tri‐substituted alkenes as well as aryl nitriles with turnover numbers (TONs) of up to 390000. Mechanistic investigations and density functional theory calculations revealed the lowering of reaction energy barriers by the low steric hindrance of site‐isolated mono(phosphine)‐Rh sites on the MOL to provide superior catalytic activity over homogeneous Rh catalysts. The MOL also prevents catalyst deactivation to enable recycle and reuse of P‐MOL • Rh in catalytic hydrogenation reactions.

     
    more » « less
  2. Abstract

    Phosphine‐ligated transition metal complexes play a pivotal role in modern catalysis, but our understanding of the impact of ligand counts on the catalysis performance of the metal center is limited. Here we report the synthesis of a low‐coordinate mono(phosphine)‐Rh catalyst on a metal‐organic layer (MOL), P‐MOL • Rh, and its applications in the hydrogenation of mono‐, di‐, and tri‐substituted alkenes as well as aryl nitriles with turnover numbers (TONs) of up to 390000. Mechanistic investigations and density functional theory calculations revealed the lowering of reaction energy barriers by the low steric hindrance of site‐isolated mono(phosphine)‐Rh sites on the MOL to provide superior catalytic activity over homogeneous Rh catalysts. The MOL also prevents catalyst deactivation to enable recycle and reuse of P‐MOL • Rh in catalytic hydrogenation reactions.

     
    more » « less
  3. Abstract

    Covalent organic frameworks (COFs) have received broad interest owing to their permanent porosity, high stability, and tunable functionalities. COFs with long‐range π‐conjugation and photosensitizing building blocks have been explored for sustainable photocatalysis. Herein, we report the first example of COF‐based energy transfer Ni catalysis. A pyrene‐based COF with sp2carbon‐conjugation was synthesized and used to coordinate NiIIcenters through bipyridine moieties. Under light irradiation, enhanced energy transfer in the COF facilitated the excitation of Ni centers to catalyze borylation and trifluoromethylation reactions of aryl halides. The COF showed two orders of magnitude higher efficiency in these reactions than its homogeneous control and could be recovered and reused without significant loss of catalytic activity.

     
    more » « less
  4. Abstract

    Covalent organic frameworks (COFs) have received broad interest owing to their permanent porosity, high stability, and tunable functionalities. COFs with long‐range π‐conjugation and photosensitizing building blocks have been explored for sustainable photocatalysis. Herein, we report the first example of COF‐based energy transfer Ni catalysis. A pyrene‐based COF with sp2carbon‐conjugation was synthesized and used to coordinate NiIIcenters through bipyridine moieties. Under light irradiation, enhanced energy transfer in the COF facilitated the excitation of Ni centers to catalyze borylation and trifluoromethylation reactions of aryl halides. The COF showed two orders of magnitude higher efficiency in these reactions than its homogeneous control and could be recovered and reused without significant loss of catalytic activity.

     
    more » « less
  5. null (Ed.)