- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000100000000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Aloimonos, Yiannis (1)
-
Baxevani, Kleio (1)
-
Campbell, Brendan (1)
-
Lin, Xiaomin (1)
-
Mallette, Jeremy (1)
-
Mange, Vivek (1)
-
Neuberger, Bernhard (1)
-
Palnitkar, Aadi (1)
-
Rekleitis, Ioannis (1)
-
Suresh, Arjun (1)
-
Tanner, Herbert_G (1)
-
Vera, Alhim (1)
-
Vincze, Markus (1)
-
Williams, Alan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Oysters are a vital keystone species in coastal ecosystems, providing significant economic, environmental, and cultural benefits. As the importance of oysters grows, so does the relevance of autonomous systems for their detection and monitoring. However, current monitoring strategies often rely on destructive methods. While manual identification of oysters from video footage is non-destructive, it is time-consuming, requires expert input, and is further complicated by the challenges of the underwater environment. To address these challenges, we propose a novel pipeline using stable diffusion to augment a collected real dataset with photorealistic synthetic data. This method enhances the dataset used to train a YOLOv10-based vision model. The model is then deployed and tested on an edge platform; Aqua2, an Autonomous Underwater Vehicle (AUV), achieving a state-of-the-art 0.657 mAP@50 for oyster detection.more » « lessFree, publicly-accessible full text available May 28, 2026
An official website of the United States government
