Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Marine animal forests are benthic communities dominated by sessile suspension feeders (such as sponges, corals, and bivalves) able to generate three-dimensional (3D) frameworks with high structural complexity. The biodiversity and functioning of marine animal forests are strictly related to their 3D complexity. The present paper aims at providing new perspectives in underwater optical surveys. Starting from the current gaps in data collection and analysis that critically limit the study and conservation of marine animal forests, we discuss the main technological and methodological needs for the investigation of their 3D structural complexity at different spatial and temporal scales. Despite recent technological advances, it seems that several issues in data acquisition and processing need to be solved, to properly map the different benthic habitats in which marine animal forests are present, their health status and to measure structural complexity. Proper precision and accuracy should be chosen and assured in relation to the biological and ecological processes investigated. Besides, standardized methods and protocols are strictly necessary to meet the FAIR (findability, accessibility, interoperability, and reusability) data principles for the stewardship of habitat mapping and biodiversity, biomass, and growth data.more » « less
- 
            Abstract Structured population models are among the most widely used tools in ecology and evolution. Integral projection models (IPMs) use continuous representations of how survival, reproduction and growth change as functions of state variables such as size, requiring fewer parameters to be estimated than projection matrix models (PPMs). Yet, almost all published IPMs make an important assumption that size‐dependent growth transitions are or can be transformed to be normally distributed. In fact, many organisms exhibit highly skewed size transitions. Small individuals can grow more than they can shrink, and large individuals may often shrink more dramatically than they can grow. Yet, the implications of such skew for inference from IPMs has not been explored, nor have general methods been developed to incorporate skewed size transitions into IPMs, or deal with other aspects of real growth rates, including bounds on possible growth or shrinkage.Here, we develop a flexible approach to modelling skewed growth data using a modified beta regression model. We propose that sizes first be converted to a (0,1) interval by estimating size‐dependent minimum and maximum sizes through quantile regression. Transformed data can then be modelled using beta regression with widely available statistical tools. We demonstrate the utility of this approach using demographic data for a long‐lived plant, gorgonians and an epiphytic lichen. Specifically, we compare inferences of population parameters from discrete PPMs to those from IPMs that either assume normality or incorporate skew using beta regression or, alternatively, a skewed normal model.The beta and skewed normal distributions accurately capture the mean, variance and skew of real growth distributions. Incorporating skewed growth into IPMs decreases population growth and estimated life span relative to IPMs that assume normally distributed growth, and more closely approximate the parameters of PPMs that do not assume a particular growth distribution. A bounded distribution, such as the beta, also avoids the eviction problem caused by predicting some growth outside the modelled size range.Incorporating biologically relevant skew in growth data has important consequences for inference from IPMs. The approaches we outline here are flexible and easy to implement with existing statistical tools.more » « less
- 
            ABSTRACT MotivationHere, we make available a second version of the BioTIME database, which compiles records of abundance estimates for species in sample events of ecological assemblages through time. The updated version expands version 1.0 of the database by doubling the number of studies and includes substantial additional curation to the taxonomic accuracy of the records, as well as the metadata. Moreover, we now provide an R package (BioTIMEr) to facilitate use of the database. Main Types of Variables IncludedThe database is composed of one main data table containing the abundance records and 11 metadata tables. The data are organised in a hierarchy of scales where 11,989,233 records are nested in 1,603,067 sample events, from 553,253 sampling locations, which are nested in 708 studies. A study is defined as a sampling methodology applied to an assemblage for a minimum of 2 years. Spatial Location and GrainSampling locations in BioTIME are distributed across the planet, including marine, terrestrial and freshwater realms. Spatial grain size and extent vary across studies depending on sampling methodology. We recommend gridding of sampling locations into areas of consistent size. Time Period and GrainThe earliest time series in BioTIME start in 1874, and the most recent records are from 2023. Temporal grain and duration vary across studies. We recommend doing sample‐level rarefaction to ensure consistent sampling effort through time before calculating any diversity metric. Major Taxa and Level of MeasurementThe database includes any eukaryotic taxa, with a combined total of 56,400 taxa. Software Formatcsv and. SQL.more » « lessFree, publicly-accessible full text available May 1, 2026
- 
            Abstract Structured demographic models are among the most common and useful tools in population biology. However, the introduction of integral projection models (IPMs) has caused a profound shift in the way many demographic models are conceptualized. Some researchers have argued that IPMs, by explicitly representing demographic processes as continuous functions of state variables such as size, are more statistically efficient, biologically realistic, and accurate than classic matrix projection models, calling into question the usefulness of the many studies based on matrix models. Here, we evaluate how IPMs and matrix models differ, as well as the extent to which these differences matter for estimation of key model outputs, including population growth rates, sensitivity patterns, and life spans. First, we detail the steps in constructing and using each type of model. Second, we present a review of published demographic models, concentrating on size‐based studies, which shows significant overlap in the way IPMs and matrix models are constructed and analyzed. Third, to assess the impact of various modeling decisions on demographic predictions, we ran a series of simulations based on size‐based demographic data sets for five biologically diverse species. We found little evidence that discrete vital rate estimation is less accurate than continuous functions across a wide range of sample sizes or size classes (equivalently bin numbers or mesh points). Most model outputs quickly converged with modest class numbers (≥10), regardless of most other modeling decisions. Another surprising result was that the most commonly used method to discretize growth rates for IPM analyses can introduce substantial error into model outputs. Finally, we show that empirical sample sizes generally matter more than modeling approach for the accuracy of demographic outputs. Based on these results, we provide specific recommendations to those constructing and evaluating structured population models. Both our literature review and simulations question the treatment of IPMs as a clearly distinct modeling approach or one that is inherently more accurate than classic matrix models. Importantly, this suggests that matrix models, representing the vast majority of past demographic analyses available for comparative and conservation work, continue to be useful and important sources of demographic information.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
