skip to main content

Search for: All records

Creators/Authors contains: "Lindquist, B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We demonstrate the utility of an unsupervised machine learning tool for the detection of phase transitions in off-lattice systems. We focus on the application of principal component analysis (PCA) to detect the freezing transitions of two-dimensional hard-disk and three-dimensional hard-sphere systems as well as liquid-gas phase separation in a patchy colloid model. As we demonstrate, PCA autonomously discovers order-parameter-like quantities that report on phase transitions, mitigating the need for a priori construction or identification of a suitable order parameter—thus streamlining the routine analysis of phase behavior. In a companion paper, we further develop the method established here to explore the detection of phase transitions in various model systems controlled by compositional demixing, liquid crystalline ordering, and non-equilibrium active forces.

    more » « less
  2. We outline how principal component analysis can be applied to particle configuration data to detect a variety of phase transitions in off-lattice systems, both in and out of equilibrium. Specifically, we discuss its application to study (1) the nonequilibrium random organization (RandOrg) model that exhibits a phase transition from quiescent to steady-state behavior as a function of density, (2) orientationally and positionally driven equilibrium phase transitions for hard ellipses, and (3) a compositionally driven demixing transition in the non-additive binary Widom-Rowlinson mixture.

    more » « less
  3. null (Ed.)
    Two additions impacting tables 3 and 4 in ref. [1] are presented in the following. No significant impact is found for other results or figures in ref. [1]. 
    more » « less