Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Artificial neural networks (ANNs) inspired by biology are beginning to be widely used to model behavioural and neural data, an approach we call ‘neuroconnectionism’. ANNs have been not only lauded as the current best models of information processing inthe brain butalsocriticized for failing to account for basic cognitive functions. In this Perspective article, we propose that arguing about the successes and failures of a restricted set of current ANNs is the wrong approach to assess the promise of neuroconnectionism for brain science. Instead, we take inspiration from the philosophy of science, and in particular from Lakatos, who showed that the core of a scientific research programme is often not directly falsifiable but should be assessed by its capacity to generate novel insights. Following this view, we present neuroconnectionism as a general research programme centred around ANNs as a computational language for expressing falsifiable theories about brain computation. We describe the core of the programme, the underlying computational framework and its tools for testing specific neuroscientific hypotheses and deriving novel understanding. Taking a longitudinal view, we review past and present neuroconnectionist projects and their responses to challenges and argue that the research programme is highly progressive, generating new and otherwise unreachable insights into the workings of the brain.more » « less
-
Imagine you have lost your cell phone. Your eyes scan the cluttered table in front of you, searching for its familiar blue case. But what is happening within the visual areas of your brain while you search? One possibility is that neurons that represent relevant features such as 'blue' and 'rectangular' increase their activity. This might help you spot your phone among all the other objects on the table. Paying attention to specific features improves our performance on visual tasks that require detecting those features. The 'feature similarity gain model' proposes that this is because attention increases the activity of neurons sensitive to specific target features, such as ‘blue’ in the example above. But is this how the brain solves such challenges in practice? Previous studies examining this issue have relied on correlations. They have shown that increases in neural activity correlate with improved performance on visual tasks. But correlation does not imply causation. Lindsay and Miller have now used a computer model of the brain’s visual pathway to examine whether changes in neural activity cause improved performance. The model was trained to use feature similarity gain to detect an object within a set of photographs. As predicted, changes in activity like those that occur in the brain did indeed improve the model’s performance. Moreover, activity changes at later stages of the model's processing pathway produced bigger improvements than activity changes earlier in the pathway. This may explain why attention affects neural activity more at later stages in the visual pathway. But feature similarity gain is not the only possible explanation for the results. Lindsay and Miller show that another pattern of activity change also enhanced the model’s performance, and propose an experiment to distinguish between the two possibilities. Overall, these findings increase our understanding of how the brain processes sensory information. Work is ongoing to teach computers to process images as efficiently as the human visual system. The computer model used in this study is similar to those used in state-of-the-art computer vision. These findings could thus help advance artificial sensory processing too.more » « less