Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Through a combination of many analytical approaches, we show that a metal organic nanotube (UMON) displays selectivity for H 2 O over all types of heavy water (D 2 O, HDO, HTO). Water adsorption experiments combined with vibrational and radiochemical analyses reveal significant differences in uptake and suggest that surface adsorption processes may be a key driver in water uptake for this material.more » « less
-
Free, publicly-accessible full text available October 1, 2025
-
Free, publicly-accessible full text available October 1, 2025
-
Free, publicly-accessible full text available October 1, 2025
-
A<sc>bstract</sc> A search for Higgs boson pair (HH) production in association with a vector boson V (W or Z boson) is presented. The search is based on proton-proton collision data at a center-of-mass energy of 13 TeV, collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb−1. Both hadronic and leptonic decays of V bosons are used. The leptons considered are electrons, muons, and neutrinos. The HH production is searched for in the$$ \textrm{b}\overline{\textrm{b}}\textrm{b}\overline{\textrm{b}} $$ decay channel. An observed (expected) upper limit at 95% confidence level of VHH production cross section is set at 294 (124) times the standard model prediction. Constraints are also set on the modifiers of the Higgs boson trilinear self-coupling,kλ, assumingk2V= 1, and vice versa on the coupling of two Higgs bosons with two vector bosons,k2V. The observed (expected) 95% confidence intervals of these coupling modifiers are−37.7 <kλ< 37.2 (−30.1 <kλ< 28.9) and−12.2 <k2V< 13.5 (−7.2 <k2V< 8.9), respectively.more » « lessFree, publicly-accessible full text available October 1, 2025