Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2025
-
Free, publicly-accessible full text available August 1, 2025
-
We introduce nested gausslet bases, an improvement on previous gausslet bases that can treat systems containing atoms with much larger atomic numbers. We also introduce pure Gaussian distorted gausslet bases, which allow the Hamiltonian integrals to be performed analytically, as well as hybrid bases in which the gausslets are combined with standard Gaussian-type bases. All these bases feature the diagonal approximation for the electron–electron interactions so that the Hamiltonian is completely defined by two Nb × Nb matrices, where Nb ≈ 104 is small enough to permit fast calculations at the Hartree–Fock level. In constructing these bases, we have gained new mathematical insight into the construction of one-dimensional diagonal bases. In particular, we have proved an important theorem relating four key basis set properties: completeness, orthogonality, zero-moment conditions, and diagonalization of the coordinate operator matrix. We test our basis sets on small systems with a focus on high accuracy, obtaining, for example, an accuracy of 2 × 10−5 Ha for the total Hartree–Fock energy of the neon atom in the complete basis set limit.more » « less
-
Abstract A key component of the phase diagram of many iron-based superconductors and electron-doped cuprates is believed to be a quantum critical point (QCP), delineating the onset of antiferromagnetic spin-density wave order in a quasi-two-dimensional metal. The universality class of this QCP is believed to play a fundamental role in the description of the proximate non-Fermi liquid behavior and superconducting phase. A minimal model for this transition is the O(3) spin-fermion model. Despite many efforts, a definitive characterization of its universal properties is still lacking. Here, we numerically study the O(3) spin-fermion model and extract the scaling exponents and functional form of the static and zero-momentum dynamical spin susceptibility. We do this using a Hybrid Monte Carlo (HMC) algorithm with a novel auto-tuning procedure, which allows us to study unprecedentedly large systems of 80 × 80 sites. We find a strong violation of the Hertz-Millis form, contrary to all previous numerical results. Furthermore, the form that we do observe provides good evidence that the universal scaling is actually governed by the analytically tractable fixed point discovered near perfect “hot-spot’ nesting, even for a larger nesting window. Our predictions can be directly tested with neutron scattering. Additionally, the HMC method we introduce is generic and can be used to study other fermionic models of quantum criticality, where there is a strong need to simulate large systems.more » « less
-
Quantum embedding theories are powerful tools for approximately solving large‐scale, strongly correlated quantum many‐body problems. The main idea of quantum embedding is to glue together a highly accurate quantum theory at the local scale and a less accurate quantum theory at the global scale. We introduce the first quantum embedding theory that is also variational, in that it is guaranteed to provide a one‐sided bound for the exact ground‐state energy. Our method, which we call the variational embedding method, provides a lower bound for this quantity. The method relaxes the representability conditions for quantum marginals to a set of linear and semidefinite constraints that operate at both local and global scales, resulting in a semidefinite program (SDP) to be solved numerically. The accuracy of the method can be systematically improved. The method is versatile and can be applied, in particular, to quantum many‐body problems for both quantum spin systems and fermionic systems, such as those arising from electronic structure calculations. We describe how the proper notion of quantum marginal, sufficiently general to accommodate both of these settings, should be phrased in terms of certain algebras of operators. We also investigate the duality theory for our SDPs, which offers valuable perspective on our method as an embedding theory. As a byproduct of this investigation, we describe a formulation for efficiently implementing the variational embedding method via a partial dualization procedure and the solution of quantum analogues of the Kantorovich problem from optimal transport theory. © 2021 Wiley Periodicals LLC.more » « less