Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 6, 2024
-
The goal of causal mediation analysis, often described within the potential outcomes framework, is to decompose the effect of an exposure on an outcome of interest along different causal pathways. Using the assumption of sequential ignorability to attain non-parametric identification, Imai et al. (2010) proposed a flexible approach to measuring mediation effects, focusing on parametric and semiparametric normal/Bernoulli models for the outcome and mediator. Less attention has been paid to the case where the outcome and/or mediator model are mixed-scale, ordinal, or otherwise fall outside the normal/Bernoulli setting. We develop a simple, but flexible, parametric modeling framework to accommodate the common situation where the responses are mixed continuous and binary, and, apply it to a zero-one inflated beta model for the outcome and mediator. Applying our proposed methods to the publicly-available JOBS II dataset, we (i) argue for the need for non-normal models, (ii) show how to estimate both average and quantile mediation effects for boundary-censored data, and (iii) show how to conduct a meaningful sensitivity analysis by introducing unidentified, scientifically meaningful, sensitivity parameters.more » « less
-
Abstract Causal inference practitioners have increasingly adopted machine learning techniques with the aim of producing principled uncertainty quantification for causal effects while minimizing the risk of model misspecification. Bayesian nonparametric approaches have attracted attention as well, both for their flexibility and their promise of providing natural uncertainty quantification. Priors on high‐dimensional or nonparametric spaces, however, can often unintentionally encode prior information that is at odds with substantive knowledge in causal inference—specifically, the regularization required for high‐dimensional Bayesian models to work can indirectly imply that the magnitude of the confounding is negligible. In this paper, we explain this problem and provide tools for (i) verifying that the prior distribution does not encode an inductive bias away from confounded models and (ii) verifying that the posterior distribution contains sufficient information to overcome this issue if it exists. We provide a proof‐of‐concept on simulated data from a high‐dimensional probit‐ridge regression model, and illustrate on a Bayesian nonparametric decision tree ensemble applied to a large medical expenditure survey.
-
Abstract In causal inference problems, one is often tasked with estimating causal effects which are analytically intractable functionals of the data‐generating mechanism. Relevant settings include estimating intention‐to‐treat effects in longitudinal problems with missing data or computing direct and indirect effects in mediation analysis. One approach to computing these effects is to use the
g ‐formula implemented via Monte Carlo integration; when simulation‐based methods such as the nonparametric bootstrap or Markov chain Monte Carlo are used for inference, Monte Carlo integration must be nested within an already computationally intensive algorithm. We develop a widely‐applicable approach to accelerating this Monte Carlo integration step which greatly reduces the computational burden of existingg ‐computation algorithms. We refer to our method as acceleratedg ‐computation (AGC). The algorithms we present are similar in spirit to multiple imputation, but require removing within‐imputation variance from the standard error rather than adding it. We illustrate the use of AGC on a mediation analysis problem using a beta regression model and in a longitudinal clinical trial subject to nonignorable missingness using a Bayesian additive regression trees model. -
Summary Ensembles of decision trees are a useful tool for obtaining flexible estimates of regression functions. Examples of these methods include gradient-boosted decision trees, random forests and Bayesian classification and regression trees. Two potential shortcomings of tree ensembles are their lack of smoothness and their vulnerability to the curse of dimensionality. We show that these issues can be overcome by instead considering sparsity inducing soft decision trees in which the decisions are treated as probabilistic. We implement this in the context of the Bayesian additive regression trees framework and illustrate its promising performance through testing on benchmark data sets. We provide strong theoretical support for our methodology by showing that the posterior distribution concentrates at the minimax rate (up to a logarithmic factor) for sparse functions and functions with additive structures in the high dimensional regime where the dimensionality of the covariate space is allowed to grow nearly exponentially in the sample size. Our method also adapts to the unknown smoothness and sparsity levels, and can be implemented by making minimal modifications to existing Bayesian additive regression tree algorithms.