skip to main content


Search for: All records

Creators/Authors contains: "Linfang Wang, Sean Chen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Neural Normalized MinSum (N-NMS) decoding delivers better frame error rate (FER) performance on linear block codes than conventional normalized MinSum (NMS) by assigning dynamic multiplicative weights to each check-to-variable message in each iteration. Previous N-NMS efforts have primarily investigated short-length block codes (N < 1000), because the number of N-NMS parameters to be trained is proportional to the number of edges in the parity check matrix and the number of iterations, which imposes am impractical memory requirement when Pytorch or Tensorflow is used for training. This paper provides efficient approaches to training parameters of N-NMS that support N-NMS for longer block lengths. Specifically, this paper introduces a family of neural 2-dimensional normalized (N-2D-NMS) decoders with with various reduced parameter sets and shows how performance varies with the parameter set selected. The N-2D-NMS decoders share weights with respect to check node and/or variable node degree. Simulation results justify this approach, showing that the trained weights of N-NMS have a strong correlation to the check node degree, variable node degree, and iteration number. Further simulation results on the (3096,1032) protograph-based raptor-like (PBRL) code show that N-2D-NMS decoder can achieve the same FER as N-NMS with significantly fewer parameters required. The N-2D-NMS decoder for a (16200,7200) DVBS-2 standard LDPC code shows a lower error floor than belief propagation. Finally, a hybrid decoding structure combining a feedforward structure with a recurrent structure is proposed in this paper. The hybrid structure shows similar decoding performance to full feedforward structure, but requires significantly fewer parameters. 
    more » « less