skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Ling, Zhen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
    In this paper, we explore the use of microcontrollers (MCUs) and crypto coprocessors to secure IoT applications, and show how developers may implement a low-cost platform that provides protects private keys against software attacks. We first demonstrate the plausibility of format string attacks on the ESP32, a popular MCU from Espressif that uses the Harvard architecture. The format string attacks can be used to remotely steal private keys hard-coded in the firmware. We then present a framework termed SIC 2 (Securing IoT with Crypto Coprocessors), for secure key provisioning that protects end users' private keys from both software attacks and untrustworthy manufacturers. As a proof of concept, we pair the ESP32 with the low-cost ATECC608A cryptographic coprocessor by Microchip and connect to Amazon Web Services (AWS) and Amazon Elastic Container Service (EC2) using a hardware-protected private key, which provides the security features of TLS communication including authentication, encryption and integrity. We have developed a prototype and performed extensive experiments to show that the ATECC608A crypto chip may significantly reduce the TLS handshake time by as much as 82% with the remote server, and it may lower the total energy consumption of the system by up to 70%. Our results indicate that securing IoT with crypto coprocessors is a practicable solution for low-cost MCU based IoT devices. 
    more » « less
  4. null (Ed.)
    Internet of Things (IoT) devices have been increasingly integrated into our daily life. However, such smart devices suffer a broad attack surface. Particularly, attacks targeting the device software at runtime are challenging to defend against if IoT devices use resource-constrained microcontrollers (MCUs). TrustZone-M, a TrustZone extension for MCUs, is an emerging security technique fortifying MCU based IoT devices. This paper presents the first security analysis of potential software security issues in TrustZone-M enabled MCUs. We explore the stack-based buffer overflow (BOF) attack for code injection, return-oriented programming (ROP) attack, heap-based BOF attack, format string attack, and attacks against Non-secure Callable (NSC) functions in the context of TrustZone-M. We validate these attacks using the Microchip SAM L11 MCU, which uses the ARM Cortex-M23 processor with the TrustZone-M technology. Strategies to mitigate these software attacks are also discussed. 
    more » « less