skip to main content

Search for: All records

Creators/Authors contains: "Linghuan Hu, W. Eric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Studies have shown that combinatorial testing (CT) can be effective for detecting faults in software systems. By focusing on the interactions between different factors of a system, CT shows its potential for detecting faults, especially those that can be revealed only by the specific combinations of values of multiple factors (multi-factor faults). However, is CT practical enough to be applied in the industry? Can it be more effective than other industry-favored techniques? Are there any challenges when applying CT in practice? These research questions remain in the context of industrial settings. In this paper, we present an empirical study of CT on five industrial systems with real faults. The details of the input space model (ISM) construction, such as factor identification and value assignment, are included. We compared the faults detected by CT with those detected by the inhouse testing teams using other methods, and the results suggest that despite some challenges, CT is an effective technique to detect real faults, especially multi-factor faults, of software systems in industrial settings. Observations and lessons learned are provided to further improve the fault detection effectiveness and overcome various challenges.